
Information and Software Technology 54 (2012) 16–40

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

A systematic review of software architecture evolution research

Hongyu Pei Breivold a,⇑, Ivica Crnkovic b, Magnus Larsson a

a ABB Corporate Research, Industrial Software Systems, 721 78 Västerås, Sweden
b Mälardalen University, 721 23 Västerås, Sweden
a r t i c l e i n f o

Article history:
Received 26 October 2010
Received in revised form 3 June 2011
Accepted 5 June 2011
Available online 16 June 2011

Keywords:
Software evolvability
Systematic review
Software architecture
Architecture evolution
Architecture analysis
Evolvability analysis
0950-5849/$ - see front matter � 2011 Elsevier B.V. A
doi:10.1016/j.infsof.2011.06.002

⇑ Corresponding author.
E-mail addresses: hongyu.pei-breivold@se.abb.c

crnkovic@mdh.se (I. Crnkovic), magnus.larsson@se.ab
a b s t r a c t

Context: Software evolvability describes a software system’s ability to easily accommodate future
changes. It is a fundamental characteristic for making strategic decisions, and increasing economic value
of software. For long-lived systems, there is a need to address evolvability explicitly during the entire
software lifecycle in order to prolong the productive lifetime of software systems. For this reason, many
research studies have been proposed in this area both by researchers and industry practitioners. These
studies comprise a spectrum of particular techniques and practices, covering various activities in soft-
ware lifecycle. However, no systematic review has been conducted previously to provide an extensive
overview of software architecture evolvability research.
Objective: In this work, we present such a systematic review of architecting for software evolvability. The
objective of this review is to obtain an overview of the existing approaches in analyzing and improving
software evolvability at architectural level, and investigate impacts on research and practice.
Method: The identification of the primary studies in this review was based on a pre-defined search strat-
egy and a multi-step selection process.
Results: Based on research topics in these studies, we have identified five main categories of themes:
(i) techniques supporting quality consideration during software architecture design, (ii) architectural
quality evaluation, (iii) economic valuation, (iv) architectural knowledge management, and (v) modeling
techniques. A comprehensive overview of these categories and related studies is presented.
Conclusion: The findings of this review also reveal suggestions for further research and practice, such as
(i) it is necessary to establish a theoretical foundation for software evolution research due to the fact that
the expertise in this area is still built on the basis of case studies instead of generalized knowledge; (ii) it
is necessary to combine appropriate techniques to address the multifaceted perspectives of software
evolvability due to the fact that each technique has its specific focus and context for which it is appro-
priate in the entire software lifecycle.

� 2011 Elsevier B.V. All rights reserved.
Contents
1. Introduction . 17
2. Research method . 18
2.1. Review protocol. 18
2.2. Inclusion and exclusion criteria . 18
2.3. Search process . 18
2.4. Quality assessment . 19
2.5. Data extraction and synthesis . 19
3. Overview of the included studies . 19

3.1. Data sources . 19
3.2. Citation status . 20
3.3. Temporal view. 20
3.4. Active research communities . 20
ll rights reserved.

om (H.P. Breivold), ivica.
b.com (M. Larsson).

http://dx.doi.org/10.1016/j.infsof.2011.06.002
mailto:hongyu.pei-breivold@se.abb.com
mailto:ivica. crnkovic@mdh.se
mailto:ivica. crnkovic@mdh.se
mailto:magnus.larsson@se.abb.com
http://dx.doi.org/10.1016/j.infsof.2011.06.002
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

sy

H.P. Breivold et al. / Information and Software Technology 54 (2012) 16–40 17
4. Results. 20
1 The
stem
4.1. Quality considerations during software architecture design . 21

4.1.1. Quality attribute requirement-focused . 23
4.1.2. Quality attribute scenario-focused . 25
4.1.3. Influencing factor-focused . 26

4.2. Quality evaluation at software architecture level . 29

4.2.1. Experience-based . 29
4.2.2. Scenario-based . 30
4.2.3. Metric-based . 31
4.3. Economic valuation in determining level of uncertainty . 31

4.3.1. Relevance to software evolvability . 32
4.4. Architectural knowledge management . 32

4.4.1. Relevance to software evolvability . 32
4.5. Modeling techniques . 33

4.5.1. Relevance to software evolvability . 34

5. Discussions . 34

5.1. Scope of the systematic review . 34
5.2. Impacts on research and practice. 34
5.2.1. Technology maturation . 34
5.2.2. Theoretical foundation and formalization to software architecture evolution . 35
5.2.3. Combining approaches to address multifaceted perspectives of software evolvability . 35
5.2.4. Tailoring relevant approaches for individual development contexts. 35
5.3. Validity threats . 35

6. Conclusions. 36

Appendix A. Studies included in the review. 37
References . 40
1. Introduction

It has long been recognized that, for long-lived industrial soft-
ware, the largest part of lifecycle costs is concerned with the evo-
lution of software to meet changing requirements [6]. To keep up
with new business opportunities, the need to change software on
a constant basis with major enhancements within a short time-
scale puts critical demands on the software system’s capability of
rapid modification and enhancement. Lehman et al. [27] describes
two perspectives on software evolution: ‘‘what and why’’ versus
‘‘how’’. The ‘‘what and why’’ perspective studies the nature of the
software evolution phenomenon and investigates its driving fac-
tors and impacts. The ‘‘how’’ perspective studies the pragmatic as-
pects, i.e. technology, methods and tools that provide the means to
control software evolution. In this research, we focus on the ‘‘how’’
perspective of software evolution.

The term evolution reflects ‘‘a process of progressive change in the
attributes of the evolving entity or that of one or more of its constitu-
ent elements’’ [30]. Specifically, software evolution relates to how
software systems change over time [52]. One of the principle chal-
lenges in software evolution is therefore the ability to evolve soft-
ware over time to meet the changing requirements of its
stakeholders [35], and to achieve cost-effective evolution. In this
context, software evolvability has emerged as an attribute that
‘‘bears on the ability of a system to accommodate changes in its
requirements throughout the system’s lifespan with the least possible
cost while maintaining architectural integrity’’ [42].

The ever-changing world makes evolvability a strong quality
requirement for the majority of software architectures [8,41].
The inability to effectively and reliably evolve software systems
means loss of business opportunities [7]. Based on our experi-
ences and observations from various cases in industrial contexts
(for example [S15,S34],1 [25]), we have noticed that industry has
started to have serious considerations related to evolvability
references starting with S are the studies that were identified in the
atic review. A complete list of these studies can be found in the Appendix.
beyond maintainability. From these studies, we also witness
examples of different industrial systems that have a lifetime of
10–30 years and are continuously changing. These systems are
subject to and may undergo a substantial amount of evolutionary
changes, e.g. software technology changes, system migration to
product line architecture, ever-changing managerial issues such
as demands for distributed development, and ever-changing
business decisions driven by market situations. Software systems
must often reflect these changes to adequately fulfill their roles
and remain relevant to stakeholders. Evolvability was therefore
identified in these cases as a very important quality attribute
that must be continuously maintained during their lifecycle. As
software evolvability is a fundamental element for an efficient
implementation of strategic decisions, and increasing economic
value of software [11,51], for such long-lived systems, there is
a need to address evolvability explicitly during the entire
lifecycle and thus prolong the productive lifetime of software
systems.

Analyzing and improving software evolution can be done
through various ways; e.g. analyzing release histories, source
code, and software architecture level analysis. Our research fo-
cuses on the architectural level analysis for two reasons. Firstly,
the foundation for any software system is its architecture, which
allows or precludes nearly all of the quality attributes of the
system [S30]. For instance, a system without an adaptable archi-
tecture will degenerate sooner than a system based on an archi-
tecture that takes changes into account [16]. Secondly, the
architecture of a software system describes its high level structure
and behavior, thus, software architecture exposes the dimensions
along which a system is expected to evolve [17] and provides ba-
sis for software evolution [33]. Therefore, architecture evolution
permits planning and system restructuring at a high level of
abstraction where quality and business tradeoffs can be analyzed
[S39].

Many research studies focus on how to analyze and
improve software evolvability, using a particular technique or
practice. However, no systematic review of software architecture

18 H.P. Breivold et al. / Information and Software Technology 54 (2012) 16–40
evolvability research has been published previously to describe
the wide spectrum of results in these studies. The main objective
of our research is therefore to systematically select and review
published literature, and present a holistic overview of the exist-
ing studies in analyzing and achieving software evolvability at
architectural level. Secondary objectives are (i) to bring practitio-
ners up to date to the state of research themes that have been ac-
tively pursued by the research community in software
evolvability architecting, and quickly identifying relevant studies
that suit their own needs; (ii) to help the research community to
identify challenges and research gaps that require further explora-
tion. Concretely, we stated the following research questions:

(1) What approaches have been reported regarding the analysis
and achievement of software evolvability at the architec-
tural level?

(2) What are the main research themes covered in the scientific
literature regarding analysis and achievement of evolvabili-
ty-related quality attributes?

(3) What are the main focus and application contexts of these
approaches, along with their relevance to software
evolvability?

(4) What is the impact of the studies to research community
and practice?

The remainder of the article is structured as follows. Section 2
describes the research method used in this review. Section 3 pre-
sents overview information of the studies included in our system-
atic literature review (SLR). Section 4 presents the results of the
review in five main categories of themes with detailed description
of relevant studies and analysis of their relevance to evolvability.
Section 5 discusses principle findings of the review along with its
impact on research and practice, as well as validity threats of the
review. Section 6 concludes the paper.

Table 1
Inclusion and exclusion criteria.

Inclusion criteria
English peer-reviewed studies that provide answers to the research questions
Studies that focus on software evolution
Studies that focus on software architecture analysis and/or software quality

analysis related to software evolvability
Studies are published up to and including the first two quarters of 2010

Exclusion criteria
Studies are not in English
Studies that are not related to the research questions
Studies in which claims are non-justified or ad hoc statements instead of

based on evidence
Duplicated studies
2. Research method

This research was undertaken as a systematic review [23]
which is a formalized and repeatable process to document relevant
knowledge on a specific subject area for assessing and interpreting
all available research related to a research question. The research
includes several stages: (i) development of a review protocol; (ii)
identification of inclusion and exclusion criteria; (iii) the search
process for relevant publications; (iv) quality assessment; (v) data
extraction and synthesis. These stages are detailed in the following
subsections.

2.1. Review protocol

We formulated a review protocol based on the systematic liter-
ature review guidelines and procedures [23]. This protocol speci-
fies the background for the review, research questions, search
strategy, study selection criteria, data extraction and synthesis of
the extracted data. The protocol was mainly developed by one
author and reviewed by the other authors to reduce bias. The back-
ground and the research questions are described in Section 1, while
other elements are described below.

2.2. Inclusion and exclusion criteria

The goal of setting up criteria is to find all relevant studies in
our research. We consider full papers in English from peer-re-
viewed journals, conferences and workshops published up to
and including the first two quarters of 2010. We did not set a
lower boundary on the year of publication because we intended
to include all relevant studies that are stored in databases over
the years. We exclude studies that do not explicitly relate to soft-
ware evolution, analysis of software architecture, and software
quality related to software evolution. We also exclude prefaces,
editorials, and summaries of tutorials, panels and poster sessions.
Furthermore, when several duplicated articles of a study exist in
different versions that appear as books, journal papers, confer-
ence and workshop papers, we include only the most complete
version of the study and exclude the others. A summary of the
inclusion and exclusion criteria for this review is presented in
Table 1. Note that a study must satisfy all inclusion criteria,
and not satisfy any of the exclusion criteria.

2.3. Search process

We concentrate on searching in scientific databases rather than
in specific books or technical reports, as we assume that the major
research results in books and reports are also usually described or
referenced in scientific papers. However, this does not prevent us
from including a book as an identified study if the book gives com-
prehensive descriptions of a certain relevant topic. For instance,
the Architecture Tradeoff Analysis Method (ATAM) was described
in a conference paper [21] and it was also thoroughly explained
in a book [S30]. We have therefore included the book as a selected
study.

The searched electronic databases include:

– ACM Digital Library (http://portal.acm.org).
– Compendex (http://www.engineeringvillage.com).
– IEEE Xplore (http://www.ieee.org/web/publications/xplore/).
– ScienceDirect – Elsevier (http://www.elsevier.com).
– SpringerLink (http://www.springerlink.com).
– Wiley InterScience (http://www3.interscience.wiley.com).
– ISI Web of Science (http://www.isiknowledge.com).

These databases were chosen as they provide the most impor-
tant and with highest impact full-text journals and conference
proceedings, covering the fields of software quality, software archi-
tecture and software engineering in general. After an initial search
of these databases, we did an additional reference scanning and
analysis in order to find out whether we have missed anything,
thus to guarantee that we have selected a representative set of
studies. The searched results were also checked against a core set
of studies within software architecture evolution and software
quality analysis to ensure confidence in the comprehensiveness
of search results.

The notion of evolvability is used in many different ways in the
context of software engineering with many other closely-related
alternative words such as flexibility, maintainability, adaptability
and modifiability. Therefore, we consider these words in the list
of search terms. In addition, we have, in our earlier work [S15],

http://portal.acm.org
http://www.engineeringvillage.com
http://www.ieee.org/web/publications/xplore/
http://www.elsevier.com
http://www.springerlink.com
http://www3.interscience.wiley.com
http://www.isiknowledge.com

H.P. Breivold et al. / Information and Software Technology 54 (2012) 16–40 19
outlined a software evolvability model and identified subcharac-
teristics that are of primary importance for a software system to
be evolvable. The identified subcharacteristics are a union of qual-
ity characteristics that are relevant for characterization of evolu-
tion of long-lived software-intensive systems during their life
cycle, comprising analyzability, architectural integrity, changeability,
extensibility, portability, testability and domain-specific attributes.
These evolvability subcharacteristics thus, also provide input and
motivate the search terms that we use in the research when
searching for relevant studies.

Among evolvability subcharacteristics, portability and testabil-
ity are not explicitly considered as search terms for the review,
as we have in the preliminary search found that they are quite of-
ten pertained to maintainability, adaptability and flexibility. Do-
main-specific attribute comprises quality characteristics that are
specific for a particular domain, and is considered too general to
be used as a search term. The remaining subcharacteristics, analyz-
ability, changeability and extensibility are included as search terms.
Therefore, the following search terms are used to find relevant
studies, and all these search terms were combined by using the
Boolean OR operator:

� S1: software architecture AND evolvability,
� S2: software architecture AND maintainability,
� S3: software architecture AND extensibility,
� S4: software architecture AND adaptability,
� S5: software architecture AND flexibility,
� S6: software architecture AND changeability,
� S7: software architecture AND modifiability,
� S8: software architecture AND analyzability.

The selection of studies was performed through a multi-step
process:

(i) Search in databases to identify relevant studies by using the
search terms.

(ii) Exclude studies based on the exclusion criteria.
(iii) Exclude irrelevant studies based on analysis of their titles

and abstracts.
(iv) Obtain primary studies based on full text read.

Fig. 1 shows the search process and the number of publica-
tions identified at each stage. Duplicate publications were re-
moved. We performed the search process at two points in time,
i.e. one in August 2009, and the other one in the end of August
2010, with the intention to cover the latest results of publications
in 2009 and 2010. In the first search process, the search strategy
identified a total of 3036 publications that we entered into the
tool EndNote,2 which was also used in the subsequent steps for
reference storage and sorting. These publications were checked
against the inclusion and exclusion criteria. Irrelevant publica-
tions were removed and this resulted in 731 remaining publica-
tions. After further filtering by reading titles and abstracts, 306
publications were left for full text screening to ensure that the
contents indeed relate to the topic of software architecture evolu-
tion. In the end, 58 studies were identified as primary studies
after the first search process. After we had performed a comple-
mentary search in the end of August, 2010, following the same
entire search process, 24 new papers were added. This resulted
in a total of 82 studies in the final list, covering the publications
up to and including the first two quarters of 2010. We explain the
relative high increase of the studies as: (1) inclusion of studies
from 2009 and 2010 (since several studies from 2009 were not

2 www.endnote.com.
available in the database in the first search), and (2) the increased
interest in the topic.
2.4. Quality assessment

To guide the interpretation of findings in the included studies,
and determine the strength of inferences, we used the following
quality criteria for appraising the selected studies. These criteria
indicate the credibility of an individual study when synthesizing
results:

(1) The data analysis of the study is rigorous and based on evi-
dence or theoretical reasoning instead of non-justified or ad
hoc statements.

(2) The study has a description of the context in which the
research was carried out.

(3) The aims of the study are supported by the design and exe-
cution of research.

(4) The study has a description of the research method used for
data collection.

To ascertain our confidence in the credibility of a particular
identified study and its relevance for data synthesis in the review,
all the included studies met each of the four criteria.
2.5. Data extraction and synthesis

The data extraction and synthesis process was carried out by
reading each of the 82 papers thoroughly and extracting relevant
data, which were managed through bibliographical management
tool EndNote and Excel spreadsheets. In order to keep information
consistent the data extraction for the 82 studies was driven by a
form shown in Table 2. For the data synthesis, we inspected the ex-
tracted data for similarities in order to define how results could be
encapsulated. The results of the synthesis will be described in the
subsequent sections.
3. Overview of the included studies

A list of all the selected studies is provided in the appendix. The
section describes these studies with respect to their sources of
publication and citation status which are also indicators on the
quality and their impact. A temporal view and research communi-
ties that are active in the field of software architecture evolution
are presented as well.
3.1. Data sources

Most of these 82 studies were published in leading journals,
conferences or seminal books that belong to the most cited pub-
lication sources in software engineering community. Table 3
gives an overview of the distribution of the studies based on
their publication channels, along with the number of studies
from each source. All the studies fulfill the criteria for quality
assessment as described in the previous section. In addition,
the impact factor3 of the publication sources represents also the
degree of high quality and potential impact of these studies, and
provides confidence in the overall quality assessment of the sys-
tematic review. This is also indicated in the citation status de-
scribed in the next subsection.
3 For instance, based on the search results (performed on 22nd of September, 2010)
in respective journal web sites, JSS has impact factor of value 1.34, JST with value of
1.82, Journal of Advanced Engineering Informatics of value 1.73.

http://www.endnote.com

58 references
306

references
731

references

Search in
August 2009

Complimentary search
in August 2010

Search in databases
using search terms

Exclude studies based
on the inclusion and

exclusion criteria

3036
references Exclude studies based

on titles and abstracts
Exclude studies based
on full-text screening

77
references

105
referencesSearch in databases

using search terms

Exclude studies based
on the inclusion and

exclusion criteria

313
references Exclude studies based

on titles and abstracts
Exclude studies based
on full-text screening

24 references

82 primary studies

Fig. 1. Stages of the search process.

Table 2
Data extraction for each study.

Extracted data Description

Identity of study Unique identity for the study
Bibliographic references Author, year of publication, title and source of

publication
Type of study Book, journal paper, conference paper, workshop

paper
Focus of the study Main topic area, concepts, motivation and

objective of the study
Research method used

for data collection
Included technique for the design of the study,
e.g. case study, survey, experiment, interview to
obtain data, observation

Data analysis Qualitative or quantitative analysis of data
Application context Description of the context and application

settings of the study, e.g. domain, academic or
industrial settings

Constraints and
limitations

Identified constraints and limitations in the
application of an approach as well as the
identified areas for future research

Architecture-centric
activity

Indicating the architecture-centric activity on
which the study is focused, e.g. business case,
creating architecture, documenting architecture,
analyzing architecture, etc.

Software lifecycle The phase of software lifecycle covered in the
study

20 H.P. Breivold et al. / Information and Software Technology 54 (2012) 16–40

3.2. Citation status

Table 4 provides an overview of the citation rates of the in-
cluded studies. These numbers are obtained from Google Scholar.4

The data presented here only gives a rough indication of citation
rates, and are not meant for comparison among studies. Thirty-five
studies have been cited by less than 10 other sources. Among these
35 studies, 22 are published in 2009 and 2010, so it is not expected
that they can reach a higher citation number in such a short period.
Almost half of the studies (38 studies) have been cited by more
than 20 other sources. Thirteen studies have very high citation
rates with more than 80 other sources.

We can see that, in general; the citation rates of the studies
are quite high, which is also an indicator on the high quality
and impact of the studies. We expect that the number of cita-
tions will grow since most of the papers have been published
in the last 6 years (see Section 3.3). The most cited studies (cited
by more than 60 other sources) are summarized in Table 5. The
first five studies are books, and the rest are papers in journals
and conferences.
4 http://scholar.google.se/ accessed on 4th of September, 2010.
3.3. Temporal view

Looking at the studies by year of publication as shown in Fig. 2,
we notice in the trend curve an increasing number of publications
in the area of software architecture evolution since 1999. (Note
that for year 2010, the review only covers the registered publica-
tion in the databases until the first two quarters.) We also notice
that all of the included studies were published in 1992 or later.
As described in Section 2, we did not set a lower boundary for
the year of publication in the search process, yet the time frame
of identified studies reflects also the time frame of the evolution
and maturation of software architecture area. The significant in-
crease of publications in software architecture evolution area,
especially during the last 2 years, indicates that, as more and more
systems become legacy over the years, the crucial role of software
architecture evolution is being recognized. The recent boost in re-
search also reflects that the ability to evolve software rapidly and
reliably has become a major challenge and research focus for soft-
ware engineering.

3.4. Active research communities

In terms of the active research communities within the area of
software architecture evolution and software evolvability, we
look at the affiliation details5 of the identified set of studies. The
assignment of contributed studies of each active research commu-
nity is based on the affiliations that appeared in the publications.
Table 6 summarizes the active research communities (with at least
two publications within software architecture evolution) along
with the corresponding number of contributed studies. Overall,
the set of studies are dominated by Software Engineering Institute
(SEI)/Carnegie Mellon University, Vrije University, and University of
Groningen.
4. Results

As described in Section 2, during the data synthesis phase, we
examined the identified studies based on their similarities in
terms of research topics and contents in order to categorize the
included studies of architecture evolution and software evolvabil-
ity. Besides classifying the included studies, we also examined
the research method used for data collection in each study, and
application context for each approach described in the studies.
The research method used for data collection in the included
study is the techniques used for the design of the study, such
5 Please note that during the search process of relevant studies, we did not use any
information on authors or research centers for identifying studies because the result
of identified studies would be otherwise limited and biased.

http://scholar.google.se/

Table 3
Study distribution per publication sources.

Source Count

Journal of Systems and Software (JSS) 14
Working IEEE/IFIP Conference on Software Architecture (WICSA) 8
Books 5
International Conference on Software Engineering (ICSE) 5
Workshop on Sharing and Reusing Architectural Knowledge-

Architecture, Rationale, and Design Intent (SHARK)
5

IEEE International Conference on Software Maintenance (ICSM) 4
Journal of Information and Software Technology (IST) 4
Journal of Systems Engineering 4
International Conference on Quality Software (QSIC) 3
International Workshop on Principles of Software Evolution (IWPSE) 2
IEEE/ACM International Conference on Automated Software

Engineering (ASE)
2

European Conference on Software Maintenance and Reengineering 2
IEEE International Conference on Engineering of Complex Computer

Systems
2

Journal of Software Maintenance and Evolution 1
Journal of Systems Architecture 1
Journal of Computer Standards & Interfaces 1
Journal of Advanced Engineering Informatics 1
Journal of Software: Practice and Experience 1
IEEE International Computer Software and Applications Conference 1
IEEE International Symposium on Requirements Engineering 1
IEEE Software 1
International Conference on Software Engineering Advances 1
International Conference on Information Science and Applications

(ICISA)
1

International Conference on Research Challenges in Information
Science

1

International Conference on Software Reuse 1
International Software Metrics Symposium 1
ACM SIGSOFT software engineering notes 1
Conference of the Centre for Advanced Studies on Collaborative

research
1

International Conference and Workshops on Engineering of
Computer-Based Systems (ECBS)

1

ACIS International Conference on Software Engineering, Artificial
Intelligences, Networking and Parallel/Distributed Computing

1

International Computer Software and Applications Conference 1
International Workshop on Economic-Driven Software Engineering

Research
1

International Workshop on the Economics of Software and
Computation

1

European Software Engineering Conference held jointly with 9th
ACM SIGSOFT International Symposium on Foundations of
Software Engineering

1

World Congress on Computer Science and Information Engineering
(CSIE)

1

Total 82

Table 4
Status of citation rate in detail.

Cited by <10 10–20 20–30 30–40 40–50 50–60 60–70 70–80 >80

No. of studies
(Total 82)

35 9 10 1 6 4 2 2 13

H.P. Breivold et al. / Information and Software Technology 54 (2012) 16–40 21

as case study, survey, experiment, interview or observation to
obtain data. This information is the input to the ‘‘Included
Technique’’ columns in Tables 7–15, explaining the specific tech-
niques used in each approach. The application context of each
approach refers to the description of the context and application
settings of the study described in the included studies, e.g., do-
main, academic or industrial settings. This information is the in-
put to the ‘‘Validation’’ columns in Tables 7–15, explaining the
context (academic/industrial setting and in which domain) of
the application of each approach.

After examining the research topics addressed in each study, we
identified, from the included studies, five main categories of
themes, two of which are further refined into sub-categories to
group primary studies that share similar characteristics in terms
of specific research focus, research concepts and contexts. The cat-
egories and sub-categories are:

(1) Quality considerations during software architecture design:
This category focuses on how software quality can be intro-
duced and explicitly considered during software architec-
ture design phase.
a. Quality attribute requirement focused [S8,S10,S13,S25–

S27,S79].
b. Quality attribute scenario focused [S24,S30].
c. Influencing factor focused [S1,S29,S31,S38,S42,S80].

(2) Architectural quality evaluation: This category focuses on the
subsequent iteration when the architecture starts to take
form, with emphasis on architectural quality evaluation
methods that help elicit and refine additional quality attri-
bute requirements and scenarios.
a. Experience based [S14,S34,S37,S50,S73].
b. Scenario based [S11,S33,S47,S48,S53,S54,S62].
c. Metric based [S5,S15,S16,S28,S55–S57,S67,S71,S75].

(3) Economic valuation: This category focuses on consideration
of cost, effort, value and alignment with business goals,
when determining an appropriate degree of architectural
flexibility [S4,S6,S7,S9,S18,S23,S35,S46,S64,S66,S72].

(4) Architectural knowledge management: This category focuses
on how architecture documentation can be enriched
through utilizing different information sources to capture
architectural knowledge for quality attributes and their
rationale [S2,S3,S12,S19–S22,S36,S40,S43–S45,S52,S68,S70,
S77,S78,S82].

(5) Modeling techniques: This category focuses on modeling
traceability and visualizing corresponding impact of the evo-
lution of software architecture artifacts [S17,S32,S39,S41,
S49,S51,S58–S61,S63,S65,S69,S74,S76,S81].

Fig. 3 illustrates these categories of themes and their corre-
sponding sub-categories along with an overview of distribution
of studies.

These five categories of themes represent an overview of the
main topics of software architecture evolution research. Each
theme stands for a research direction on its own, with only a sub-
set of its research and application dedicated to the area of software
architecture evolution. As explained, each theme exhibits its spe-
cific research focus. Therefore, taking into consideration that evolv-
ability needs to be addressed throughout the complete software
lifecycle, the approaches addressed in each category of theme
can be combined to complement each other from different per-
spectives in order to achieve software evolvability.

The categories and their corresponding sub-categories will be
further detailed in the following subsections. For each category
of theme, we describe the category and related studies, along with
their relevance to software evolvability. An analysis of the studies
is discussed and summarized in tables. Each table includes the fol-
lowing items: (i) the main focus and application context of each
approach, including issues such as constraints and limitations;
(ii) the techniques adopted in each approach; and (iii) research val-
idation environment.

4.1. Quality considerations during software architecture design

This category includes studies that focus on how software quality
can be introduced and explicitly considered during software architec-
ture design phase. These studies help identify key quality attributes
and constraints early, usually before the software architecture
starts to take form. Based on their focus, the studies are further

Table 5
Most cited studies.

Ranking Studies Titles

1 [S8] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, Addison-Wesley Professional, 2003
2 [S27] L. Chung, B.A. Nixon, E. Yu, J. Mylopoulos, Non-Functional Requirements in Software Engineering, Springer, 2000
3 [S13] J. Bosch, Design and Use of Software Architectures: Adopting and Evolving a Product-Line Approach, Addison-Wesley Professional, 2000
4 [S30] P. Clements, R. Kazman, M. Klein, Evaluating Software Architectures: Methods and Case Studies, Addison-Wesley, 2006
5 [S42] C. Hofmeister, R. Nord, D. Soni, Applied Software Architecture: A Practical Guide for Software Designers, Addison-Wesley Professional, 2000
6 [S47] R. Kazman, L. Bass, G. Abowd, M. Webb, SAAM: a method for analyzing the properties of software architectures, in: International Conference on

Software Engineering, 1994, pp. 81–90
7 [S48] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, J. Carriere, The architecture tradeoff analysis method, in: 4th IEEE International Conference

on Engineering of Complex Computer Systems (ICECCS), 1998, pp. 68–78
8 [S56] M.M. Lehman, J.F. Ramil, P.D. Wernick, D.E. Perry, W.M. Turski, Metrics and laws of software evolution-the nineties view, in: 4th International

Software Metrics Symposium, 1997
9 [S50] M. Klein, R. Kazman, L. Bass, J. Carriere, M. Barbacci, H. Lipson, Attribute-based architecture styles,in: Working IEEE/IFIP Conference on Software

Architecture (WICSA), 1999
10 [S72] K.J. Sullivan, W.G. Griswold, Y. Cai, B. Hallen, The structure and value of modularity in software design, in: 8th European Software Engineering

Conference held jointly with 9th ACM SIGSOFT International Symposium on Foundations of Software Engineering, 2001
11 [S11] P. Bengtsson, N. Lassing, J. Bosch, H. van Vliet, Architecture-level modifiability analysis (ALMA), Journal of Systems and Software 69 (2004) 129–

147
12 [S46] R. Kazman., J. Asundi, M. Klein, Quantifying the costs and benefits of architectural decisions, in: 23rd International Conference on Software

Engineering, 2001
13 [S9] P. Bengtsson, J. Bosch, Architecture level prediction of software maintenance, in: 3rd European Conference on Software Maintenance and

Reengineering (CSMR), 1999, pp. 139–147
14 [S10] P. Bengtsson, J. Bosch, Scenario-based software architecture reengineering, in: International Conference on Software Reuse, 1998, pp. 308–317.
15 [S81] W.M.N. Wan-Kadir, P. Loucopoulos, Relating evolving business rules to software design, Journal of Systems Architecture 50 (2004) 367–382
16 [S53] N. Lassing, P. Bengtsson, H. van Vliet, J. Bosch, Experiences with ALMA: architecture-Level Modifiability Analysis, Journal of Systems and Software

61 (2002) 47–57
17 [S45] A. Jansen, J. Van der Ven, P. Avgeriou, D.K. Hammer, Tool support for architectural decisions, in: Working IEEE/IFIP Conference on Software

Architecture (WICSA), 2007

0

2

4

6

8

10

12

14

16

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Fig. 2. Number of papers by year of publication.

Table 6
Active research communities within software architecture evolution.

Affiliations Contributed studies Number of studies

Software Engineering Institute, Carnegie Mellon University, USA [S8,S23,S24,S29,S30,S39,S46–S48,S50,S64] 11
Vrije University, the Netherlands [S11,S32,S36,S51–S54,S68,S80] 9
University of Groningen, the Netherlands [S13,S32,S43–S45,S53,S78] 7
University of Texas, USA [S12,S26–S28,S71] 5
Blekinge Institute of Technology/ University of Karlskrona/Ronneby, Sweden [S9–S11,S53,S73] 5
University Rey Juan Carlos, Spain [S3,S21,S22,S78] 4
Swinburne University of Technology, Australia [S19,S77,S78,S80] 4
National ICT Australia, Australia [S1,S77,S82] 3
University of Limerick, Ireland [S2,S3,S78] 3
University of New South Wales, Australia [S1,S3,S82] 3
University of Waterloo, Canada [S47,S58,S74] 3
Imperial College of Science, England [S56,S67] 2
Mälardalen University, Sweden [S15,S16] 2
ABB Corporate Research, Sweden [S15,S16] 2
Nokia Research Center, Finland [S33,S34] 2
Technical University Ilmenau, Germany [S17,S40] 2
Texas Christian University, USA [S18,S35] 2
University College London, England [S6,S7] 2

22 H.P. Breivold et al. / Information and Software Technology 54 (2012) 16–40

Table 8
Summary of quality attribute scenario-focused approaches.

Study Focus and application
context

Included
technique

Validation

[S24] Architectural quality goals
are mapped into scenarios,
mechanisms that realize
the scenarios, and analytic
models that measure the
results

Scenarios Validated with
example scenarios
from two real-life
software systems

Analytic
models

[S30] Judge the appropriateness
of a partial architecture for
its intended purpose
during architecture design

Active
design
review

Validated in various
domains

Scenarios
Stakeholder-
centric

Table 9
Summary of influencing factor-focused approaches.

Study Focus and application
context

Included
technique

Validation

[S1] Quantitatively
determine the optimal
design alternative that
best satisfy stakeholders’
quality goals and project
constraints

Interviews Validated as a post-
mortem analysis of a
production software
system for
information analysts

Optimization
techniques

Observed limitations in
judgment uncertainties
and judgment
consistency

Analytic
Hierarchy
Process (AHP)

[S29] Capture business goals
early in the lifecycle

Business goal
scenarios

Validated in Boeing
system

[S31] Provides an iterative
process to implement
the architecture design

Decision
abstraction

Validated in two large
scale projects

Issue relationship at
different levels is not
handled

Issue
decomposition
principle

[S38] Changeability
incorporates four
aspects, i.e. robustness,
flexibility, agility and
adaptability

Theoretical
reasoning

Illustrated by
examples from
varying industries

[S42] Identify architecturally
significant factors early
in the design phase and
develop strategies

Global analysis Validated in various
domains

[S80] Identify design
constraints and analyze
their impact on
architecture

Design
constraint
properties

Validated in industrial
systems

Table 7
Summary of quality attribute requirement-focused approaches.

Study Focus and
application context

Included technique Validation

[S8] Focus on prioritized
requirements, i.e.
functional
requirements,
quality attribute
requirements and
design constraints

Recursive top-down
design

Validated in
various domains

Assist architects in
making design
decisions based on
their effects on
quality attributes

[S10,S13] The design process
separates
architectural design
based on functional
requirements and
quality
requirement
optimization

Several
optimization
techniques are
used, e.g. scenarios,
simulations,
mathematical
modeling

Validated in the
embedded systems
domain

An iterative design
process to optimize
architecture

[S25] Investigate
architectural
qualities and
stakeholders’
concerns by using
executable code

Experimental
technique

Validated in
various domains

[S26] Require
clarifications of the
notion of
adaptability in
order to refine
adaptability
requirements

NFR – soft goal
interdependency
graph

Illustrated by a
home appliance
control system

Particular domain
characteristics are
considered

Design patterns
Qualitative tradeoff
analysis of impact

[S27] Treat non-
functional
requirements as
soft goals

NFR framework
with soft goal
interdependency
graph

Validated in
various domains

Considers each
design decision
based on its effects
on the quality
attributes
Does not provide
support to
explicitly perform
tradeoff analysis
between competing
design decisions

[S79] Identify
stakeholders and
their concerns

Strategic
Dependency Model
(SDM)

Validated in an
industrial case
study in wireless
environment
controlling system

Qualitative and/or
quantitative
analysis of
adaptability
depending on the
knowledge of
components’
behavior

Objective reasoning
for qualitative
analysis

H.P. Breivold et al. / Information and Software Technology 54 (2012) 16–40 23

classified into three sub-categories: (i) quality attribute require-
ment-focused; (ii) quality attribute scenario-focused; and (iii)
influencing factor-focused.
4.1.1. Quality attribute requirement-focused
The studies in this sub-category perceive quality attribute

requirements as the main focus in the software architecture design
phase, and consider each design decision based on its implications
on the prioritized quality attributes.

– Attribute-Driven Design (ADD) [S8] is a recursive top-down
method for architects to hierarchically decompose a system
and define software architecture by applying architectural tac-
tics and patterns. It is applied after the requirement analysis
phase in the lifecycle to accomplish a software system’s
coarse-grained high-level conceptual architecture.

– Quality Attribute Oriented Software Architecture Design (QASAR)
[S10,S13] describes a software design method that explicitly con-
siders quality attributes during the design process. The method

Table 10
Summary of experience-based quality evaluation approaches.

Study Focus and application
context

Included
Technique

Validation

[S14] Detect erosion when it
has happened

Interview Validated in various
industrial domains

List of
questions and
actions

[S34] Knowledge-based
assessment

Semi-
structured
interviews

Validated in an
industrial mobile
terminal product
family

Stakeholder-centric: rely
on experiences of
stakeholders
Implicit iteration in the
process
Requires well-focused
assessment scope and
careful selection of
stakeholders

[S37] Five strategies to cope
with change

Questioning
through
questionnaire
and interviews

An exploratory case
study in
telecommunication
domain

Prevention and front-
loading strategy needs to
be complemented with
building changeability
into system architecture

[S50] Associate a qualitative or
quantitative reasoning
framework with an
architectural style

Questionnaire/
checklist

Validated in various
domains

[S73] A quantified decision
support method that
creates increased joint
understanding on the
choice of software
architecture candidates
and quality attributes

Questionnaire Validated as an
industrial experiment
on a software system
in automatic guided
vehicles system
domain with
experienced
practitioners

Risk in problematic
interpretation of
questionnaire questions,
architecture candidates
and quality attributes

Analytic
Hierarchy
Process (AHP)

Rely on experiences of
stakeholders.
Require sufficient
participants to achieve
reliable measures

Discussion
meetings

Table 11
Summary of scenario-based quality evaluation approaches.

Study Focus and application
context

Included
technique

Validation

[S11,S53,S54] Focus on modifiability Brainstormed
change
scenarios

Validated in
various
domains

Pursue maintenance
prediction, risk
assessment and software
architecture comparison

Scenario
classification
scheme

Goal of the analysis
determines techniques
for the analysis process,
e.g. scenario elicitation
technique and scenario
evaluation technique

Scenario
weight
estimation

Interviews

[S33] Lightweight analysis
method tuned to
software product line
architecture

Scenarios Validated in
Nokia
multimedia
software
domain

Iterative process with
focus on evolvability

Interviews

Stakeholder-centric Brainstorming
session

Little guidance to
scenario selection and
ranking process

[S47] Qualitative assessment Brainstormed
scenarios

Validated in
various
domains

Iterative scenario
development

Voting
procedure for
scenario
prioritization

Provide few explicit
techniques for the
analysis process and
relies much on the
assessor’s experiences

Rank by
assigning
weights

[S48] Qualitative tradeoff
analysis

Utility tree Validated in
various
domains

Identify architectural
risks in light of business
goals

Brainstormed
scenarios

Consider multiple quality
attributes and identify
tradeoffs between quality
attributes

Voting
procedure for
scenario
prioritization

Explicitly consider both
business and technical
perspectives
Assess consequences of
architectural decisions in
light of quality attributes

[S62] Focus on risks and
quality attributes for
both common product
line architecture and
individual product
architecture

Utility tree Demonstrated
as an
industrial trial

Identification of
evolvability points and
evolvability guidelines

Brainstormed
scenarios

Need further validation
and refinement through
applying to real life
product line
architectures

Voting
procedure for
scenario
prioritization

24 H.P. Breivold et al. / Information and Software Technology 54 (2012) 16–40

consists of three key phases, i.e. functionality-based architec-
ture design, architecture assessment and architecture transfor-
mation. The design process starts with an application
architectural design based on the functional requirements with-
out explicitly addressing quality requirements. This design is
then evaluated with respect to quality requirements qualita-
tively or quantitatively to achieve an estimated value for each
quality attribute. Depending on whether or not the estimated
value satisfies the requirement specification, an architecture
transformation might be required for quality attribute
optimization.

– Architectural prototyping [S25] is an another technique to design
software architectures by using executable code to investigate
architectural quality attributes that are related to stakeholders’
concerns with respect to a system under its development.

– Non-functional requirement (NFR) framework [S27] is a process-
oriented and qualitative decomposition approach for eliciting
and analyzing non-functional requirements. It systematically
takes into consideration the conflicts and synergies between
NFRs in order to develop an evolvable architecture. The
operation of the framework is visualized through soft-goal

Table 12
Summary of metric-based quality evaluation approaches.

Study Focus and Application Context Included Technique Validation

[S5] Base on evolution ratio and evolution speed Metrics Empirical study in mobile phone software
systems

[S15,S16] Refine evolvability into seven subcharacteristics that are measured
through measuring attributes

Subcharacteristics and
measuring attributes

Validated in industrial automation domain

[S28] Process-oriented qualitative framework for representing and reasoning
about adaptability

NFR framework Academic experiment

Depend much on intuition and expert expertise which leads to
uncertainty

[S55] Quantitatively measure quality attributes for analyzing architecture Quality attributes and
metrics

Validated in automotive industry

Architecture analysis and
design language

[S56] Computation of metrics using the number of modules Metrics Validated in a financial transaction system

[S57] Quantitatively measure and evaluate adaptability through adaptability
scenario profile and impact analysis

Scenario profile Theoretical reasoning

Metrics

[S67] Base on implementation change logs Metrics Validated with the evolution of kernel of a
mainframe operating system

More applicable for evaluating maintenance activities instead of
evolvability

[S71] Process-oriented, capture design rationale NFR framework Two industrial-scale systems, with more than
50,000 lines of code

Even experienced software engineers need training to do evolvability-
related NFR decompositions

[S75] Base on software life span and software size Metrics Theoretical reasoning

H.P. Breivold et al. / Information and Software Technology 54 (2012) 16–40 25

interdependency graphs in which quality requirements are
treated as soft-goals to be achieved. One limitation of the
framework is that it treats all NFRs as soft goals that are to be
‘‘satisficed’’, i.e. not absolutely achieved but within acceptable
limits. This might lead to ambiguity in requirement specifica-
tions when there is a need to characterize and quantify hard
goals, e.g. requirements in hard real time systems. One example
of using NFR framework along with design patterns for developing
adaptable software architecture is described in [S26]. This
approach takes into consideration particular characteristics of
software system domain, and refines quality requirements into
architectural concepts and alternatives, that are subsequently
satisfied with design patterns.

– Adaptability Evaluation Method (AEM) [S79] is an integral part of
the Quality-driven architecture design and quality analysis
(QADA) methodology [31] with specialization in the adaptabil-
ity aspect. AEM defines adaptability goals through capturing the
adaptability requirements that will be subsequently considered
in the architecture design.
4.1.1.1. Relevance to software evolvability. Except Refs. [S26,S79],
the other approaches address software quality attributes in gen-
eral, and can be tailored to address evolvability by focusing on
evolvability subcharacteristics and by considering the impacts of
a design decision on these subcharacteristics. Both Refs.
[S26,S79] explicitly address adaptability, though the definitions
of adaptability differ. In [S79], adaptability is regarded as a qualita-
tive property of software architecture’s maintainability (which is a
superset of flexibility, integrability, testability and modifiability)
and includes runtime requirements of the software system as well
as adaptation to changes in stakeholders’ requirements. In [S26]
adaptability is perceived to be heavily dependent on a particular
software development project’s scope and nature. This approach
only focuses on few design patterns that enhance adaptability of
real-time software systems and does not address the multifaceted
evolvability perspective of long-lived software systems.
A summary of quality attribute requirement-focused ap-
proaches is given in Table 7, describing the main focus and appli-
cation context of each approach, along with issues such as
constraints and limitations; the techniques adopted in each ap-
proach as well as research validation environment. Although these
approaches focus on quality attribute requirements, they differ
from each other. The NFR framework considers quality attributes
as soft goals, i.e. there is no clear-cut definition and criteria as to
whether they are satisfied or not. This is in contrast with ADD in
which quality attribute requirements are well-formed and priori-
tized. Besides quality attributes, ADD also considers functional
requirements as primary drivers in the design process. This is in
contrast with QASAR method, which conceives functional require-
ments as the primary driver for creating application architectural
design, whereas quality attributes are treated as secondary drivers
and are not considered a driving force in the first phase of the
architecture development.

4.1.2. Quality attribute scenario-focused
The studies in this sub-category focus on mapping architectural

quality goals into concrete scenarios to characterize stakeholders’
concerns throughout the software architecture design phase.

– Software architecture analysis method [S24] defines several
steps in the software design process: (i) architectural quality
goals are expressed through scenarios to characterize the
generic quality goals in concern; (ii) mechanisms are tailored
to realize the scenarios within the design constraints; and (iii)
analytic models are instantiated by scenarios that represent
quality attributes of interest or potential risk areas in archi-
tecture. The constitution of the analytic models is an iterative
process due to the ever-changing architectural requirements
and design constraints. As the system evolves, the analytic
models can be used to assess the impact of architectural
changes and monitor how architectural evolution affects its
capability to support predicted modifications.

Table 13
Summary of economic valuation approaches.

Study Focus and application context Included technique Validation

[S4] Predict maintenance efforts at architectural level Growth scenario profile Illustrated with a web content extraction
application architecture

Scenario classification with
respect to complexity

[S6] View stability as a strategic architectural quality that adds values in form of
growth options

Real options theory Theoretical reasoning

Value flexibility

[S7] Provide insight into architectural stability and software evolution
investment decisions

Real options theory Academic experiment of a refactoring case
study

[S9] Augment architecture description with size estimates Change scenarios Exemplified in the medical equipment
domain

Prediction of maintenance efforts Prediction model
Dependency on domain experts and architects
Lack of validation the representativeness of a maintenance profile

[S18] Quantify lifecycle value of enduring systems Surveys and interaction with
stakeholders

Exemplified with a cellular telephone
system

Market surveys and user group
assessment

[S23] Correlate change in developer effort to the change in coupling Compute average change in
coupling and effort

Validated in a marketing services company

Compute predicted savings in effort

[S35] Static and dynamic evaluation of architecture flexibility Real options theory Illustrated with quantitative examples
Metrics
Optimization techniques

[S46] Analyze cost and benefits of architectural strategies Quality attributes scores Validated in various domains
Sensitivity to uncertainty in cost and benefit values Benefit and cost quantification
Rely on ATAM to identify architecture strategies

[S64] Consider cost, value and alignment with business goals when exploiting
option values of an architectural pattern

Real options theory Theoretical reasoning

[S66] Model-based approach to assist in determining an appropriate degree of
architectural flexibility within constraints

Expert judgment Academic experiment in a full text system

Parametric cost modeling
Need further calibration and validation of architecture flexibility
determination model

[S72] Modularity in design creates value in the form of real options Data structure matrices Illustrated with Parnas’ KWIC example
Model design and value the design Real options theory

26 H.P. Breivold et al. / Information and Software Technology 54 (2012) 16–40

– Active Reviews for Intermediate Designs (ARID) [S30] is a sce-
nario-based assessment method for evaluating intermediate
design or parts of an architecture for early feedback. It is a
lightweight method that can be used to judge if the design
of a partial architecture is appropriate for its intended pur-
pose before the development of the complete architecture.
4.1.2.1. Relevance to software evolvability. Applying the software
architecture analysis approach in [S24] would require quite a num-
ber of evolvability scenarios to address and cover evolvability sub-
characteristics. Another limitation is that while scenarios are
anticipated events in the system life-time, evolvability by nature
concerns also unanticipated events. These limitations apply to all
scenario-based methods. The approach in [S30] focuses more on
scenarios that represent foremost problems the design is expected
to handle rather than considering a system’s long-term evolvability
aspect. Therefore, this approach needs to be complemented with
more explicit consideration of scenarios that would cover evolv-
ability concern and subcharacteristics.

A summary of quality attribute scenario-focused approaches is
given in Table 8. All approaches utilize quality attribute scenarios
though with distinct purposes; the scenarios in [S24] are used for
concretizing architectural quality goals, whereas the scenarios in
[S30] are use to identify most important functions, issues and
problems that are embedded in intermediate design.
4.1.3. Influencing factor-focused
The studies in this sub-category focus on, early in the design

phase, managing factors that are architecturally significant, and
constraints that have influence on the design process, along with
inter-dependencies among these factors and constraints that
would affect the choice of design decisions.

– ArchDesigner [S1] is a quantitative quality-driven design
approach for architectural design process. The approach
evaluates stakeholders’ quality preferences and design alterna-
tives. Meanwhile, a software architecture design problem is
considered as a global optimization problem due to the inter-
dependencies among different design decisions that need to
be maintained, as well as global constraints that influence the
selection of any design alternative, e.g. project constraints.
Optimization techniques are thus used to determine an
optimal combination of design alternatives. The influencing fac-
tors that are systematically managed are factors that influence
the design process, including conflicting stakeholders’ quality
goals, various design decisions, design alternatives and
inter-dependencies, architectural concerns and project
constraints.

– Business goal elicitation [S29] empowers architects to articulate
business goals among stakeholders early in the lifecycle, and
is used as prelude to architecture evaluation.

Table 14
Summary of architectural knowledge management approaches.

Study Focus and application context Included technique Validation

[S2,S3] Capture design decisions and rationale for quality attributes, and
provide knowledge repository

Open source groupware
platform, i.e. Hipergate

Validated as an industrial trial in architecture
evaluation process

Explicitly augment quality attribute utility tree with design decisions Data model
No support on diagrammatic modeling of design decisions
Need to be integrated with appropriate requirement management tool
to avoid work duplication

[S12] Objectively measure the extent of architectural deviation in the system Abstract architectural model
representation

Validated in a sample university registration
system

Might have limitations in handling large scale legacy system Architectural erosion measures

[S20] Capture design decisions and rationale for functional requirements Argumentation representation Validated in a set of experiments
Less attention is paid for recording quality attribute knowledge Argument ontology

[S21,S22] Provide support for capturing design decisions for quality attributes and
their rationale

Mandatory and optional
attributes

Validated in a virtual reality system

Describe and document explicitly tacit knowledge
Selection of mandatory and optional attributes for capturing design
decisions

[S36] Integrated functionality supports architects in decision-making process Architectural knowledge
sharing portal

Validated as an experiment in a software
development organization

Architectural knowledge sharing
Less attention is paid for recording quality attribute knowledge

[S40] Capture high level architectural design knowledge Taxonomy based on ANSI/IEEE
1471 standard

Theoretical meta study based on empirical
research results

Cover only a subset usage of architectural styles

[S43] Add formal architectural knowledge (AK) through annotating the
existing documented AK sources based on a formal meta model

Domain model Validated through a large industrial example

Formal meta-model
Plug-ins

[S44] Iterative process of recovering architectural design decisions Tool support Validated in an academic experiment
High dependency on architects for the recovery process

[S45] Tool support at the later stages within design to bind architectural
decisions, models and system implementation

Architectural description
language integrated with Java

Validated in an academic experiment

Less attention is paid for recording quality attribute knowledge
Not explicitly address design decision evolution perspective

[S52,S68] Utilize different information sources to capture assumptions in order to
assess the architecture’s evolutionary capabilities

Source code access Validated in an e-commerce software
product

Historical information, e.g.
development process statistics
Interviews

Evolutionary aspects of assumptions are not addressed Documentation

[S70] Support explicit rationale visualization of an architectural design
decision

Argumentation-based approach Not validated yet

[S77] Empirical investigation of use and documentation of design rationale Surveys A survey of practitioners

[S19,S78] Comparative study of architectural knowledge tool support Comparison framework of 10
criteria

Not applicable

[S82] Improve software architecture design and evaluation through mining
patterns

Scenarios. Tactics. Validated in an academic demonstration by
using EJB architecture usage patterns

Initial work on improving architecture evaluation activities for pattern
oriented systems

H.P. Breivold et al. / Information and Software Technology 54 (2012) 16–40 27

– Architecture-Based Component composition/Decision-oriented
Design (ABC/DD) [S31] accomplishes architecture design from
design decision perspective, by eliciting architecturally signifi-
cant design issues and exploiting corresponding solutions for
these issues.

– Incorporation of changeability within a system architecture is a
concept introduced in [S38]. It proposes four aspects that have
influence on changeability: (i) flexibility that characterizes a
system’s ability to be changed easily; (ii) agility that character-
izes a system’s ability to be changed rapidly; (iii) robustness
that characterizes a system’s ability to be insensitive towards
changing environment; and (iv) adaptability that characterizes
a system’s ability to adapt itself to changing environments.
These four aspects can be implemented depending on the
needed type and extent of changeability.
– Global analysis [S42] provides a systematic way to identify and
describe architecturally significant factors in the design phase
to be able to develop strategies to accommodate these factors,
and reflect future concerns early for making design decisions.
The influencing factors are classified into three categories: (i)
organizational factors that constrain design choices; (ii)
technological factors, such as choices of hardware, software,
architecture technology, and standards; (iii) product factors that
cover a product’s functional features and qualities. All these fac-
tors interact with each other. They need to be aggregated and
prioritized. New factors that may arise during design need to
be considered as well. Afterwards, issues that are influenced
by these factors are identified, and specific strategies that
address the issues are developed to reduce the impact of various
factors.

Table 15
Summary of modeling techniques.

Study Focus and application context Included technique Validation

[S17] Model relations between requirements, features, architectural
elements and implementation for evaluating and improving
evolvability

Traceability modeling Validated in an industrial IT infrastructure
domain

Features

[S32] Model architectural design decisions using ontology-driven
visualization

Ontology instances Validated in a product audit organization

[S39] Model evolution paths with the goal of choosing an optimal path
to achieve business objectives

Utility-theoretic approach Theoretical

Characterize recurring patterns as a set of evolution styles

[S41] Model change impact on the structure of software architecture Rule-based approach Implementation based on Eclipse
Development Environment

[S49] Model architectural tactics in feature models, and define semantics
for these tactics

Feature modeling Demonstrated with a stock trading system

Role-based meta-modeling language

[S51] Scope for a minimum set of links to model traceability Traceability path Illustrated with examples, i.e. product line
engineering and process management

[S58] Model various types of information, i.e. stakeholder, architecture,
quality and scenarios

Traceability modeling Empirical study in a large scale
telecommunication switching system

Risk level indication through estimating the required effort (low,
medium, or high) to make the changes

Scenarios

Analysis is based on stakeholder objectives Architecture views
Require upfront modeling and compilation of various stakeholders’
perspectives

Quality function deployment

[S59] Model tactics as opposed to focusing on NFRs themselves NFR framework Illustrated with a case study of Automatic
Teller Machine (ATM) application

Qualitative and quantitative analysis

[S60] Construct a wrapper system which generates feedback data, and
detects the need for evolutionary changes

Object-process modeling Validated by analyzing system usage
activity logs and update request history of
projects

[S61] Model concerns and map them towards software artifacts Concern model Three small evaluations assessing different
aspects

[S63] Model quality requirements to create quality attribute ontology
and requirements models

Ontology Validated in a secure middleware project

Quality driven model selection from architectural knowledge base Model-driven engineering
Model based quality evaluation (qualitative and quantitative) Domain specific modeling

Scenarios
Quantitative measuring techniques,
prediction methods, measurement based
methods

[S65] Conceptual modeling of architectural styles Ontology Illustrated with an example
Description logic

[S69] Identify software layers for the understanding and evolution of
existing object-oriented software systems

Clustering algorithm Empirical investigation

[S74] Model NFR requirements to guide software transformation NFR framework Validated with two medium-size software
systems (less than 9 KLOC)

Soft-goal inter-dependency graphs
Not explicitly address the estimation of transformation impact Design patterns

[S76] Use sequences of architectural restructurings to specify
architecture evolution

Graph transformations Validated with an Internet shop application

[S81] Model business rules as an integral part of a software system
evolution

Model Validated in a healthcare information
system

Improved traceability between requirements and design Typology

28 H.P. Breivold et al. / Information and Software Technology 54 (2012) 16–40

– Design constraint-oriented approach [S80] enhances understand-
ing of architectural decision making by treating design con-
straints, i.e. external forces that restrict an architect’s choice
of solution space, as central constructs of architecture.

4.1.3.1. Relevance to software evolvability. The ArchDesigner ap-
proach in [S1] addresses quality attributes in general and can be
tailored to assess stakeholders’ preferences on evolvability sub-
characteristics, and determine preferences of design alternatives
based on the weighting scores of evolvability subcharacteristics.
The Business goal elicitation approach in [S29] is systematic in iden-
tifying primary business drivers for performing an evolvability
analysis. Both Refs. [S31,S80] provide respectively, a qualitative
indication on how the choice of a design decision/design con-
straints, would affect evolvability. The concept in [S38] does not
cover the other evolvability subcharacteristics except changeabil-
ity. The qualities addressed in [S42] emphasize more on opera-
tional-related qualities rather than development-oriented quality
attributes of a software system such as evolvability. However,
identifying organizational factors and technical constraints is rele-
vant to determining strategies in architecting for evolvability.

Quality Evaluation at
Architectural Level

22 studies

Modeling Techniques
16 studies

Quality Considerations
during Design

15 studies

Architectural Knowledge
Management

18 studies

Economic Valuation
11 studies

Quality Attribute
Requirement Focused

7 studies

Quality Attribute
Scenario Focused

2 studies

Influencing Factor
Focused

6 studies

Experience Based
5 studies

Scenario Based
7 studies

Metric Based
10 studies

Classification of 82 studies

Superset of
studies

Category

Sub-category

Legend

Fig. 3. Classification of included studies.

H.P. Breivold et al. / Information and Software Technology 54 (2012) 16–40 29

A summary of influencing factor-focused approaches is given
in Table 9. All these approaches focus on identifying influencing
factors, though with varying perspectives of influencing factors
and presence of strengths and weakness. For instance, Global
analysis uncovers architecturally significant factors including
quality attributes in the early lifecycle of architecture design.
There is a clear traceability between influencing factors and de-
rived strategies. But the reasoning about quality consequences
of each design decision is not sufficiently supported. This weak-
ness is complemented by Al-Naeem et al. [S1], which performs
value score computation on stakeholders’ preferences on quality
attributes and weighting design alternatives’ consequences on
quality attributes. The Business goal elicitation approach focuses
on an organization’s business goals and ties them to quality attri-
bute requirements, whereas ABC/DD Ref. [S31] focuses on archi-
tecturally significant design issues, and Ref. [S80] on design
constraints.

4.2. Quality evaluation at software architecture level

An architecture assessment is triggered by various business
goals [28], such as evaluating and improving architecture and its
qualitative attributes, identifying architectural drift and erosion,
identifying risks related to a particular architecture. From an evo-
lution perspective, architecture evaluation is a preventive activity
to delay architectural decay and to limit the effect of software
aging [47]. The studies in this category focus on quality evaluation
at the architecture level when the software architecture starts to take
form after the initial design phase. Based on their focus, the studies
are further classified into three sub-categories: experience-based,
scenario-based and metric-based evaluation.

4.2.1. Experience-based
Experience-based architecture evaluation means that evalua-

tions are based on previous experiences and domain knowledge
of developers or consultants [2]. The studies in this sub-category
focus on extracting experiences of stakeholders and making use
of their tacit knowledge. The evaluation process is mostly based
on subjective factors such as intuition and experience.

– Lightweight sanity check for implemented architectures (LiSCIA)
method [S14] focuses on maintainability and reveals potential
problems as a software system evolves. The limitations of LiS-
CIA are: (i) it depends heavily on the evaluator’s opinion; (ii)
it only aims to discover potential risks related to maintainabil-
ity; (iii) the use of only a single viewpoint (module viewpoint)
sets a limit to covering all potential risks.

– Knowledge-based assessment approach [S34] evaluates the evolu-
tionary path of software architecture during its lifecycle based
on the knowledge of the stakeholders involved in the software
development organizations. The extraction of knowledge and
factual evidence of claims requires representativeness and com-
pleteness in the selection of stakeholders. The drivers for using
this method include lack of formal and complete architecture
documentation, wide scope of assessment, large number of
stakeholders, and geographical distribution of development
teams. The outcomes of the assessment are current architecture
overview, main issues found, and optionally, recommendations
for their resolutions.

– The concept of identifying causes for changes and strategies to
cope with changes during a system’s lifecycle is described in
[S37]. This concept is based on analyzing projects that are
already finished and extracting experiences on the most fre-
quent changes in terms of sources of stimuli and cost of each
change.

– Attribute-Based Architectural Style (ABAS) [S50] explicitly associ-
ates architectural styles with reasoning frameworks based on
quality-attribute-specific models for particular quality attri-
butes. A specific attribute-based architectural style is accompa-
nied with a set of questions. These questions and answers to the
questions are accumulated as a knowledge base that can be
exploited during architectural reviews.

30 H.P. Breivold et al. / Information and Software Technology 54 (2012) 16–40
– Decision support method [S73] quantitatively measures stake-
holders’ views of the benefits and liabilities of software archi-
tecture candidates and relevant quality attributes. The method
is used to understand and choose optimal candidate architec-
ture among software architecture alternatives. Although the
primary data collection is comprised of subjective judgments,
influenced by the knowledge, experiences and opinions of
stakeholders, the data collection of stakeholders’ subjective
opinions is quantifiable. Thus, any disagreements between the
participating stakeholders can be highlighted for further
discussions.

4.2.1.1. Relevance to software evolvability. The LiSCIA approach
[S14] focuses only on maintainability from module viewpoint
with respect to dependencies in order to detect erosions, i.e., de-
creases in architectural structural integrity. Although the Knowl-
edge-based assessment approach [S34] addresses evolvability,
there is no definition of the authors’ perception of evolvability.
Lacking explicit consideration of the multifaceted feature of soft-
ware evolvability, this approach might miss some key aspects that
are critical for software evolution. Heavily dependent on stake-
holders’ subjective interpretation of quality attributes, the Deci-
sion support method [S73] faces a similar issue. The ABAS
reasoning framework [S50] is based on quality-attribute-specific
models for particular quality attributes. It does not take into ac-
count the tradeoff relationships among quality attributes. Though,
in order to determine potential evolutionary paths of an architec-
ture, the preferences and tradeoffs among evolvability subcharac-
teristics must be considered.

A summary of experience-based quality evaluation approaches
is given in Table 10. These approaches differ from each other
mainly in two aspects:

(i) Method for data collection; In [S50,S73], the method for pri-
mary data collection is a questionnaire that individual par-
ticipating domain expert fills out. One possible drawback
with a questionnaire is that ambiguous questions might lead
to problematic interpretations by participants due to their
differing experiences. For instance, Ref. [S73] purposely
planned to provide less detailed descriptions of architecture
candidates in order to provide more room for participants,
though with the risk of problematic interpretations of the
architecture candidates and relevant quality attributes by
participants. As a countermeasure, interviews as in
[S14,S34,S37], can be used to complement questionnaires,
clarify questions for respondents, capture additional infor-
mation to the answers from questionnaires, as well as unex-
pected responses.

(ii) Delivered output of quality evaluation. The Knowledge-based
assessment approach in [S34] focuses on identification of
key issues that are critical for software evolution. Resolu-
tions to these issues are optional, whereas the Decision sup-
port method [S73] aims to reach a shared view of resolutions
in terms of the choice of architecture candidate by allowing
stakeholders to discuss identified disagreements. An accu-
mulated knowledge base for future exploitation is the main
output for [S37,S50].

4.2.2. Scenario-based
Scenario-based architecture evaluation means that quality

attributes are evaluated by creating scenario profiles for a concrete
description of a quality requirement [32]. The studies in this sub-
category use scenarios to avoid terminological ambiguities and
conflicting interpretation of quality attributes.
– Software Architecture Analysis Method (SAAM) [S47,S30] was
originally created for evaluating modifiability of software archi-
tecture although it has been used for other quality attributes as
well, such as portability and extensibility. The primary inputs to
the evaluation include system architecture descriptions and
scenarios that describe a stakeholder’s interaction with the sys-
tem. Based on these, SAAM establishes a mapping between
architecture and the scenarios that represent possible future
changes to the system. This mapping provides indications of
potential future complexity parts in the software and estimated
amount of work related to changes.

– Architecture Tradeoff Analysis Method (ATAM) [S48,S30] evolves
from SAAM and evaluates multiple quality attributes for under-
standing the tradeoffs inherent in the software architecture. It is
used to uncover implicit requirements, and reveal how well an
architecture satisfies particular quality attributes. It provides
insight into how these quality attributes interact with each
other, by exposing risks, non-risks, sensitivity points and trade-
off points in the software architecture.

– Holistic Product Line Architecture Assessment (HoPLAA) method
[S62] is an extension to ATAM for assessing product line archi-
tecture. This method is performed in two stages to identify risks
at two architecture levels: core architecture evaluation, and
individual product architecture evaluation. During core archi-
tecture evaluation, evolvability points are identified and evolv-
ability guidelines are defined. The notion of evolvability points
designates a sensitivity point or a tradeoff point that contains
at least one variation point. The identification of evolvability
points ensures that quality attributes at individual product
architecture level do not conflict with core architecture quality
attributes. Evolvability guidelines are used to inform designers
about potential conflicts, and guide them to make appropriate
design decisions in subsequent product architecture design
phase.

– Architecture Level Modifiability Analysis (ALMA) [S11,S53,S54]
analyzes modifiability based on scenarios that capture future
events a system needs to adapt to in its lifecycle. The method
consists of five steps: setting analysis goal, software architec-
ture description, change scenarios elicitation, change scenarios
evaluation, and interpretation of the results. Depending on the
goal of analysis, the output from an ALMA evaluation varies
among: (i) maintenance prediction to estimate required effort
for system modification to accommodate future changes; (ii)
architecture comparison for optimal candidate architecture;
and (iii) risk assessment to expose the boundaries of software
architecture by explicitly considering environment and using
complex change scenarios that the system shows inability to
adapt to.

– A scenario-based assessment method [S33] evaluates evolvability
of software product line architecture towards forthcoming
requirements. The method consists of three phases: (i) scenario
collection, classification and prioritization; (ii) architecture
evaluation based on the chosen scenarios; and (iii) assessment
result compilation. The output includes potential flaws and evo-
lutionary path of the software architecture.

4.2.2.1. Relevance to software evolvability. Both SAAM and ATAM
would require quite a number of evolvability scenarios to address
all evolvability subcharacteristics. The approaches in [S11,S53,S54]
do not cover the other evolvability subcharacteristics except
changeability, and thus need to be complemented with other
methods to address all evolvability subcharacteristics. In [S33]
evolvability of software product line architecture is evaluated to-
wards forthcoming requirements without providing a definition
of evolvability. Moreover, this approach provides little guidance

6 There is no publication on this topic yet. Therefore, it is not included in the
systematic review. Details on this topic can be found at http://www.sei.cmu.edu/
architecture/consulting/aiw/index.cfm (visited on 7th of September, 2010).

H.P. Breivold et al. / Information and Software Technology 54 (2012) 16–40 31
in scenario selection, which makes it difficult to develop scenarios
that would cover all software evolvability subcharacteristics. The
approach in [S62] assesses only product line architecture and does
not focus on the evolution of other types of architecture.

A summary of scenario-based quality evaluation approaches is
given in Table 11. These approaches exhibit a variety of character-
istics. In [S47], the scenarios proposed by stakeholders determine
the quality attributes for analysis, whereas in [S48], the quality
attributes for analysis are synthesized through explicitly consider-
ing both business and technical perspectives. ALMA focuses only on
modifiability and has distinguished analysis goals which deter-
mine the choice of change scenarios and techniques used in the
analysis process. For instance, for risk assessment, complex scenar-
ios, guided interview and system environment modeling tech-
niques are used; for maintenance cost prediction, scenarios that
are likely to occur during the operational lifecycle are used; for
architecture comparison purpose, scenarios that are handled dif-
ferently in architecture alternatives are used. One limitation of
the method is that the evaluation of change scenario with respect
to its ripple effects on other components relies much on architects’
experiences.

4.2.3. Metric-based
The studies in this sub-category assess quality impact qualita-

tively or quantitatively through specific quality metrics.

– Besides implementation change logs [S67] and computation of
metrics using the number of modules in a software system
[S56], another set of metrics is based on software life span and
software size [S75]. Software evolution can also be quantita-
tively analyzed by using evolution ratio which is the amount
of evolution in terms of software size, and evolution speed which
is an indicator of an organization’s capability for software sys-
tem’s evolution [S5].

– A framework of process-oriented metrics for software evolvabil-
ity [S71] develops intuitively architectural evolvability met-
rics, and traces the metrics back to the evolvability
requirements based on the NFR framework [13]. Similarly,
process-oriented metric for software architecture adaptability
[S28] analyzes the degree of adaptability through intuitive
decomposition of goals and intuitive scoring of goal-satisfying
level of software architecture. As the method depends much
on intuition and expert expertise, Ref. [S57] proposes a quan-
titative metric-based approach to evaluate software architecture
adaptability. This approach supports decision-making in
choosing architecture candidates that meet stakeholders’
adaptability goals that are expressed in scenario profiles.
The impact of each scenario profile is measured through IOSA
(impact on the software architecture) and ADSA (adaptability
degree of software architecture).

– A software evolvability model is outlined in [S15], in which sub-
characteristics of software evolvability and corresponding
measuring attributes are identified. The subcharacteristics that
are of primary importance for long-lived software-intensive
systems’ evolvability include analyzability, architectural integ-
rity, changeability, extensibility, portability, testability and
domain-specific attributes. Measuring attributes for each sub-
characteristic are identified as well. The idea with this model
is to further refine the identified subcharacteristics to the
extent when it is possible to quantify them and/or make
appropriate reasoning about the quality of the attributes.
Based on this evolvability model, Ref. [S16] presents an evolv-
ability analysis method which ensures that the implications of
potential improvement strategies and evolution path of a soft-
ware architecture are analyzed with respect to the evolvability
subcharacteristics.

– A tradeoff analysis method of architecture using architecture anal-
ysis and design language [S55] acquires quantitative values from
an architecture model by establishing and measuring metrics of
quality attributes.

4.2.3.1. Relevance to software evolvability. Both Refs. [S15,S16]
explicitly address software evolvability, and provides a base and
check point for evolvability evaluation and improvement. Both
Refs. [S28,S57] explicitly address software adaptability, i.e. ‘‘the
system’s ability to make adaptation, which involves environment
change detection, system change recognition and system change
enactment’’ [S28]. The focus of these studies is around changeabil-
ity subcharacteristic and does not cover other evolvability subchar-
acteristics, e.g. analyzability, testability and architectural integrity.
Although [S71] focuses on software evolvability, it does not pro-
vide any precise definition of evolvability. Instead, the study advo-
cates that the definition and decomposition of evolvability is
determined by the domain. This is in conformance to the do-
main-specific attributes defined in evolvability subcharacteristics.

A summary of metric-based quality evaluation approaches is gi-
ven in Table 12.

4.3. Economic valuation in determining level of uncertainty

The uncertainties in software architecture evolution arise from,
to a certain extent, understanding how architectural decisions map
onto quality attribute responses in terms of costs and benefits. The
studies in this category cope with uncertainty in determining an
appropriate degree of architectural flexibility and balance with eco-
nomic valuation to mitigate risks in investment.

– One way to address economic valuation is to estimate the
required effort for system modification to accommodate future
changes. For instance, maintenance cost prediction [S9] calcu-
lates the expected effort for each change scenario based on
the analysis of how the change could be implemented and the
amount of required changed code. The underlying prediction
model is based on the estimated change volume and productiv-
ity ratios. Maintenance effort prediction during architecture
design is another method [S4], which takes requirements,
domain knowledge and general software engineering knowl-
edge as input to prescribes application architecture, and quan-
tifies maintenance effort by classifying weighted scenarios in
terms of complexity.

– Instead of only focusing on cost/effort analysis, Cost Benefit
Analysis Method (CBAM) [S46] is an architecture-centric eco-
nomic modeling approach that can address long-term benefits
of a change along with its implications in complete product life-
cycle. This method quantifies design decisions in terms of cost
and benefits analysis, and prioritizes changes to architecture
based on perceived difficulty and utility. Another cost-benefit
framework for making architectural decisions is proposed in
[S23]. This approach correlates the change in developer effort
to the change in coupling by analyzing a categorized set of mod-
ifications to specific software components both before and after
an architectural refactoring. Architecture Improvement Work-
shop (AIW)6 is another method for taking economic consider-
ations – cost, benefits, and uncertainty, into account by setting
values on architectural decisions in relation to quality attributes.

http://www.sei.cmu.edu/architecture/consulting/aiw/index.cfm
http://www.sei.cmu.edu/architecture/consulting/aiw/index.cfm

32 H.P. Breivold et al. / Information and Software Technology 54 (2012) 16–40
– Software architecture decisions carry economic value in form of
real options [4,46]. Options offer flexibility and allow architec-
tural evolution over time [S6,S35]. A model for predicting the
stability of software architectures using real options is exploited
in [S6], which advocates that the flexibility of an architecture
to endure changes in stakeholders’ requirements and environ-
ment has a value in predicting stability of the software architec-
ture. To maximize the lifetime value of a software architecture,
Ref. [S35] incorporates the concept of architecture options into
design in order to exploit quantitatively an optimal degree of
design flexibility. In [S64] the authors hypothesize that archi-
tectural patterns carry economic value in the form of real
options, and propose to consider cost, value and alignment with
business goals to support architectural evolution. This approach
guides the selection of design patterns, elicitation of architec-
turally significant requirements, and valuation of architecture
in terms of design decisions with multiple quality-attribute
viewpoints. The approach in [S7] provides insights into architec-
tural flexibility and investment decisions related to the evolution
of software systems by examining probable changes along with
their added value, such as accumulated savings through endur-
ing the change without violating architectural integrity, sup-
porting future growth, and capability of responding to
competitive forces and changing market conditions. The
approach in [S72] uses design structure matrices to model designs
and real options technique to value designs.

– Given particular schedule constraints, an appropriate degree of
architectural flexibility [S66] can be determined through four
strategic elements: feature prioritization, schedule range estima-
tion, core capability determination and architecture flexibility
determination. The intention is to mitigate the risk of violating
schedule, cost and quality constraints.

– Based on several key parameters that have perceived value to a
system’s stakeholders, Ref. [S18] proposes a conceptual
approach to quantify a system’s life cycle value to facilitate adapt-
ability to changes in circumstances and stakeholder
preferences.

4.3.1. Relevance to software evolvability
Software evolvability concerns both business and technical per-

spectives as the choice of design decisions when architecting for
evolvability needs to be balanced with economic valuation to mit-
igate risks. Several studies focus on a single quality attribute, e.g.
stability in [S6,S7], flexibility in [S35,S66] and modularity in
[S72], and do not explicit consider the multifaceted aspects of
evolvability. Both Refs. [S46,S64] covers multiple quality attri-
butes. However, CBAM relies on the output from ATAM which
might not be an appropriate method for extracting scenarios to
cover all evolvability subcharacteristics (as explained in Section
4.2.2). The approach in [S64] focuses only on the value of architec-
tural patterns for quality attributes that are of interest to stake-
holders, and fails to take into account the preferences and
tradeoffs among evolvability subcharacteristics.

A summary of economic valuation approaches is given in Table
13. All these approaches consider at least one of the following, i.e.
cost, effort, value and alignment with business goals, when deter-
mining an appropriate degree of architectural flexibility.

4.4. Architectural knowledge management

The studies in this category focus on utilizing various information
sources to capture architectural knowledge, which is comprised of
architecture design, design decisions, assumptions, context, and
other factors that together shape a software architecture. In spite
of the exhibited properties of large software systems [10], e.g. soft-
ware complexity, inevitable changes of software systems and

invisibility of software structure representation, architectural
integrity needs to be maintained. An explicit representation of
architectural knowledge is therefore necessary for evolving sys-
tems and assessing future evolutionary capabilities of a system
[24].

Apart from using change scenarios and change cases to model
variability and describe future evolutionary capabilities, it is also
useful to explicitly model invariability assumptions, i.e. things that
are assumed will not change [S52]. Assumptions are design deci-
sions and rationale that are made out of personal experience and
background, domain knowledge, budget constraints and available
expertise. The discovery and recovery of architectural knowledge
in terms of assumptions help assess the evolutionary capabilities
of system architecture. These assumptions can also be used to pro-
vide additional what-if scenarios for software architecture assess-
ment, i.e. what if a certain assumption proves to be invalid. In
addition, explicit representation of traceability between architec-
ture evolution and early-made assumptions would supplement de-
sign decisions to confront uncertainties when predicting future
user requirement changes. A relevant method is Recovering Archi-
tectural Assumptions Method (RAAM) [S68] that makes assumptions
explicit by recapitulating historical information of software system
evolution.

– To assess architectural design erosion [49], an architecture
assessment model measures the extent of deviation in terms of
functional and structural divergence [S12]. In order to track soft-
ware evolution, the loss of system functionality and architec-
tural structure are represented using functional and structural
erosion indicators respectively, indicating whether changes that
are incorporated into a system would violate integrity of archi-
tectural design.

– As architectural constraints influence the quality of architec-
tural design process and improvement of software quality, the
concept of classifying architectural constraints [S40] is used to
generalize architectural styles and patterns.

– Documenting architectural design decisions (ADD) is another
approach to maintain architectural artifacts in order to evolve
software in a controlled way without compromising software
integrity [7]. Ref. [S77] reports on practitioners’ perception of
the value, usage and documentation of design rationale, and
argues for the need of tool support for capturing and using
design rationale to avoid knowledge vaporization and depen-
dency on domain experts. In line with this reclamation, several
tools have been developed [S2,S3,S20–S22,S36,S43–S45] for
sharing design decisions along with rationale. Refs.
[S19,S70,S78] provide comparative studies of these architecture
knowledge management tools. Ref. [S70] suggests another tool
for visualization of design decisions and rationale, in order to
overcome the deficiencies in the existing tools, e.g. visualization
support for dependency relationship between ADDs, support for
collaborate decision-making, and rationale visualization
support.

– Mining patterns to systematically extract and document architec-
turally significant information [S82] improves architecture evalu-
ation activities for pattern-oriented systems. General scenarios
and architectural tactics are extracted from software patterns,
and are used as input to architecture evaluation, and vice versa,
the architecture evaluation results provide input to pattern
validation.

4.4.1. Relevance to software evolvability
The studies in this sub-category focus on capturing architec-

tural knowledge, and therefore are useful in improving
architectural integrity which is one of the evolvability subcha-
racteristics.

H.P. Breivold et al. / Information and Software Technology 54 (2012) 16–40 33
A summary of architectural knowledge management ap-
proaches is given in Table 14. To achieve a good understanding
of decisions that sustain an architecture, Refs. [S52,S68] capture
assumptions that architectural decisions are often based on. Refs.
[S20,S36,S44,S45] focus specifically on capturing and managing de-
sign decisions and rationale for functional requirements, whereas
Refs. [S2,S3,S21,S22] pay more attention to capturing quality attri-
butes knowledge, i.e. design decisions and rationale for quality
attributes. Refs. [S20,S22] further distinguishes from other studies
with its explicit emphasis on architecture views. Refs. [S44,S45]
consider software architecture as a composition of a set of archi-
tectural design decisions. Ref. [S44] focuses on recovering architec-
tural design decision for the purpose of reverse engineering,
whereas Ref. [S45] maintains the relationships between design
decisions for the purpose of forward engineering. Both approaches
have a similar architectural design decision model, though Ref.
[S45] extends the decision model by combining it with a meta-
model that is comprised of an architectural model, a requirement
model and a composition model. This allows architects to docu-
ment architectural design decisions with traceability to related
requirements and part of the implementations. However, the evo-
lution perspective is not explicitly addressed in [S45]. Besides cod-
ifying architectural knowledge that concerns an architecture, Ref.
[S36] distinguishes from the above mentioned studies with one
supplementary feature, i.e. architectural knowledge sharing using
personalization techniques.

4.5. Modeling techniques

Due to the fact that all artefacts produced and used during the
entire software lifecycle are subject to change, the studies in this
category mainly focus on modeling artifacts to support software
architecture evolution.

– Modeling traceability links between requirements, features, archi-
tectural elements and implementation is described in [S17] to
improve evolvability. A formal definition of indicators that con-
cern evolvability deficiency and corresponding resolution
actions is provided as well.

– To assess software architectures for evolution and reuse, a
framework in modeling relevant information and architectural
views [S58] is proposed for reengineering, analyzing, and com-
paring software architectures. The types of information for
traceability modeling include: (i) stakeholder information that
describes stakeholders’ objectives, and provide boundaries for
analysis; (ii) architecture information such as design principles
or architectural objectives; (iii) quality information; and (iv)
scenarios that describe the use cases of the system to capture
the system’s functionality. Scenarios that are not directly
supported by the current system can be used to detect possible
flaws or assess the architecture’s support for potential enhance-
ments. In this way, sensitivity points of a system are revealed. A
lightweight traceability management concept [S51] proposes to
customize traceability by scoping the traces that need to be
maintained to only activities stakeholders must carry out.

– The approach in [S63] focuses on managing quality properties
during the whole lifecycle of model-driven development.
Besides using model and quality-driven architecture design/
evaluation, this approach is extended with knowledge engi-
neering, and involves three main phases: modeling reusable
quality requirements, representing quality in architectural
models, and model-based quality evaluation on whether the
desired quality goals are met in models and code.

– Using architectural tactics to embody non-functional requirements
(NFRs) into software architecture is described in [S49]. These tac-
tics are reusable architectural building blocks that provide

generic solutions to quality attribute issues. The tactics along
with their relationships are represented in Feature models,
whereas the structure and behavior of tactics are described
using the Role-Based Modeling Language (RBML) [22]. Another
tactic-based modeling is tactic-based non-functional requirement
(NFR) modeling approach [S59] incorporates NFRs into software
analysis and design phase. Based on a classification framework
of tactics types, the approach focuses on tactics of NFRs rather
than the NFRs themselves, and manages tradeoffs among com-
peting NFRs by considering prioritization and impact of tactics
on NFRs.

– A concern-driven software development approach [S61]
supports developers in understanding and evolving software
systems. A concern is a concept that relates a group of software
fragments. The approach consists of three main elements: (i) a
fine-grained concern model that associates each concern to the
set of artifacts that implement the concern; (ii) visualization
of concerns at both code level and architectural level; and
(iii) automated support in maintaining concern model over
time.

– Formalizing and modeling architectural knowledge is essential
for understanding the resulting impact on architectures and
software systems. One way to model architectural knowledge
is based on ontology, as ontology can be used to formally define
and capture architectural knowledge, e.g., architectural design
decisions, and architectural styles. Thus, ontology mechanisms
provide a conceptual modeling and reasoning support for archi-
tectural knowledge modeling, which helps to determine essen-
tial aspects in managing architecture evolution. The approach in
[S32] uses ontology to visualize architectural design decisions by
means of scenarios such as quality attribute tradeoff analysis,
impact analysis and if–then scenarios. Another ontological
approach for architectural style modeling [S65] is based on
description logic. Instead of using ontology to model architec-
tural style, Ref. [S76] proposes to evolve software architecture
by using graph transformations to provide a formal specifica-
tion of evolution patterns.

– Modeling an evolvable system by building a wrapper-system [S60]
coordinates three stages of iteration: capturing system behav-
ior, updating system state, and applying new changes. By using
a clustering algorithm, Ref. [S69] identifies software layers for
understanding and evolution of object-oriented software sys-
tems. To allow architects to precisely express and reason about
architecture evolution with the goal of choosing an optimal evo-
lution path for an architecture, Ref. [S39] focuses on (i) evolution
path, which is a first-class entity for representation and analy-
sis; and (ii) evolution style, which defines a family of domain-
specific architecture evolution paths that share common prop-
erties and satisfy a common set of constraints.

– Modeling change impact [S41] between software architecture
and its related source code is performed by using (i) Architec-
tural Software Component Model (ASCM) which represents
software architecture descriptions; (ii) typology of change oper-
ations; (iii) formalized change propagation mechanism; and (iv)
defined change propagation process.

– To address evolution of system requirements and software
architecture, quality-driven software reengineering model [S74]
adopts NFR Framework [13] and the concept of soft goals to
support modeling of design rationale with soft-goal interdepen-
dency graphs.

– The approach in [S81] focuses on business rules, which repre-
sent an important source of requirement changes due to their
high impact on software and business process. Business rules
are considered as an integral part of system evolution, and are
specified in Business Rule Model, which is then related to
meta-model level of software design elements through a Link

34 H.P. Breivold et al. / Information and Software Technology 54 (2012) 16–40
Model. Modeling business rules improves requirement trace-
ability in software design, and helps in localizing impacts of
changing business rules.

4.5.1. Relevance to software evolvability
The modeling-techniques help improve architecture evolution

by modeling the relationships among inter-dependent software
artefacts, which if not handled with care, would introduce incon-
sistencies and lead to evolvability degradation in the long run.

A summary of modeling techniques is given in Table 15.

7 Fig. 4 is based on the data collected from peer-reviewed journals, conferences and
workshops, which are the sources in focus in our research. Considering that some of
the later elements of the model would be perhaps found in white papers, industry
conferences, and company technical reports, there might be some variation if we
expand the scope of data sources.
5. Discussions

The identified categories of themes provide an overview of soft-
ware architecture evolvability research as well as a basis for dis-
covering possibilities for improvement in research and practice.
The following sections discuss the scope of the review, potential
impact on research and practice, as well as validity threats in this
review.

5.1. Scope of the systematic review

This paper focuses on the ‘‘how’’ perspective [27] of software
evolution, and thus only include studies that address the pragmatic
aspects, i.e., the development of methods and tools that provide
the means to control software evolution. This systematic review
focuses mainly on the studies that that describe architectural ap-
proaches concerned with software architecture analysis and soft-
ware quality improvement related to software evolvability.
Nevertheless, software evolution spawns also research disciplines
that are devoted to the topic of migrating or reengineering legacy
software systems by applying a specific software development par-
adigm to facilitate software evolution, e.g., product line engineer-
ing, and component-based engineering and service-oriented
software engineering.

Within the area of software product line engineering, basic
principles are elaborated in [9,39]. A software product family engi-
neering evaluation model is described in [48] to determine the sta-
tus of software family engineering, concerning dimensions in
business, architecture, organization and process. The RE_MODEL
method [5] integrates reengineering and product line activities to
achieve a transition into product line architecture. The PuLSE
method [43] addresses the different phases of product line devel-
opment, and is used to systematically analyze a component and
to improve its reusability as well as maintainability. In order to
evaluate the potential of creating a product line from existing
products, MAP (Mining Architectures for Product Lines) [45] fo-
cuses on the feasibility evaluation process of an organization’s
decision to move towards a product line. Options Analysis for
Reengineering [44] is another method for mining existing compo-
nents for a product line. Ref. [29] describes combining reference
architecture and configuration architecture to describe legacy
product family architecture. Research is also done in domain anal-
ysis methods. Some examples of the widely used domain analysis
techniques are Feature-Oriented Domain Analysis (FODA) [19] and
Feature-Oriented Reuse Method (FORM) [20] through using feature
models, in which system features are organized into trees of nodes
that represent the commonality and variability within a software
product line. Another notation is the orthogonal variability model
[3,39], which is a graph of variation points and variants.

Within the area of component-based and service-oriented soft-
ware engineering, Ref. [18] proposes a multi-tiered architecture
that uses both services and components as architectural elements
to offer flexible solutions to the design and integration of large and
distributed systems. Ref. [50] proposes to organize enterprise
functions as services and implement them as component-based
systems in order to offer flexible, extensible and value-added
services. Ref. [12] introduces service-oriented concepts into com-
ponent models to provide support for late binding and dynamic
component availability in the component models. Ref. [38]
explores how service oriented architecture impacts quality attri-
butes. An industrial application of applying these techniques is
presented in [1].

As we see from the above, there are numerous reengineering
techniques that help transform software architectures for evolu-
tion. However, due to the variety of software development para-
digms and the many sub-disciplines concerned in each paradigm,
we have chosen to constrain the scope of our systematic review to
architectural methods that help analyze and improve software
evolvability in general. A survey of the studies concerning the
‘‘what’’ perspective [27] and various software development para-
digms that facilitate software evolution remains to be a future work.

5.2. Impacts on research and practice

This systematic review has a number of implications for re-
search and practice.

5.2.1. Technology maturation
This systematic review provides us a perspective of where the

field of architecture evolution and software evolvability stands to-
day. To get better understanding of the development of the field,
we examined the maturity phase of the approaches described in
the included studies by mapping them against Redwine–Riddle
model [40], which identifies six typical phases for technology mat-
uration, typically taking 15–20 years for a technology to enter
widespread use.

– Basic research: investigation of ideas and concepts, and articula-
tion of research questions;

– Concept formulation: informal circulation of ideas and conver-
gence on a compatible set of ideas;

– Development and extension: exploration of preliminary use of
the technology, clarification of underlying ideas, and generaliza-
tion of the approach;

– Internal enhancement and exploration: extension of the general
approach to other domains, usage of the technology to solve
real problems, and stabilization of the technology;

– External enhancement and exploration: involvement of a broader
group outside the development group to show substantial evi-
dence of value and applicability of the technology;

– Popularization: appearance of production-quality, supported
versions and commercialization of the technology.

All the three authors of this article reviewed the 82 studies and
cataloged independently the maturation classification of the tech-
nology presented in each study. When there were any discrepan-
cies in the judgment on maturation level of any studies,
discussions were then initiated in order to reach an agreement.
Fig. 4 summarizes the classification results7 (number of studies
indicated in parenthesis for each maturation phase and maturation
distribution in percentage) according to the technology maturation
model.

We can see from the classification result that a large majority of
the 82 studies belong to early maturity stages; almost 60% of stud-

H.P. Breivold et al. / Information and Software Technology 54 (2012) 16–40 35
ies belong to early stages (basic research and concept formulation),
while around 30% of studies come to the development and exten-
sion phase. This implies that most methods and tools are still not
widely established in industrial practices, indicating that the value
and applicability of many novel research ideas still need to be fur-
ther extended on industrial projects of various scales and in differ-
ent industrial domains.

5.2.2. Theoretical foundation and formalization to software
architecture evolution

The 82 studies concern two main aspects: (i) development of
new, or modification of existing approaches to support architec-
ture evolution and software evolvability; (ii) evaluation of the ef-
fect of applying an approach. To get a good understanding of
how the approaches have been assessed, we examine the included
studies by looking into the empirical method they use, e.g. theoret-
ical reasoning, single-case validation in industry, etc. A distribution
of the studies per validation status is shown in Table 16.

About one-fifth (21.9%) of the studies have extended their ap-
proaches for solving industrial problems in multiple domains.
Two out of the five surveys were conducted on practitioners in
companies. Most of the case studies are single-case, with 34 stud-
ies done in projects in industry and 15 studies in academic settings.
Moreover, eight studies are on theoretical level, indicating also the
challenge in collecting empirical data due to the complex and lon-
gitudinal nature of software evolution. As we see from the table,
63.4% (i.e. 41.5% + 21.9%) of the studies include industrial case
studies, and 71.7% (i.e. 41.5% + 18.3% + 21.9%) include case studies.
This large percentage of case studies implies: (i) software evolution
research studies real-world phenomena, and the knowledge is ac-
quired on the basis of case studies rather than deductive logic,
mathematics, or generalized knowledge, as generalizing the results
from case studies to settings beyond the studied organizations is a
challenge; (ii) architecture evolution and software evolvability is
less expressive in formalized ways (foundation theories, quantita-
tive methods, formal languages); (iii) software evolution research
area is by its nature, due to its complexity, is more difficult to be
explained by theoretical principles than by practical experiences;
thus, a theoretical foundation with practical value for software
evolution is necessary.

5.2.3. Combining approaches to address multifaceted perspectives of
software evolvability

Each of the approaches identified in the review has its specific
focus and context that it is appropriate for. For instance, the Attri-
bute Driven Design (ADD) [S8] assists in making design decisions
based on their effects on quality attributes. The input to its com-
mencement depends on some analysis results from other methods,
e.g. Quality Attribute Workshop (QAW)8 which helps in under-
standing the problem by eliciting quality attribute requirements in
the form of quality attribute scenarios. Moreover, ADD uses prioriti-
zation of quality attributes when the choice of architectural patterns
and tactics cannot support all the desired quality attributes. In this
context, ADD depends on some kind of architecture evaluation
method, e.g. ATAM, in order to analyze how each design alternative
would influence the tradeoffs among all desired quality attributes.
Therefore, considering the architectural design activities in the soft-
ware lifecycle, ADD needs to be complemented with approaches that
support elicitation of quality requirements as well as approaches
that support reasoning about choice of design alternatives.

Another example is related to scenario-based analysis methods.
Most scenario-based software architecture analysis methods have

8 There is no publication on this topic in the electronic databases. Details on this
topic can be found at http://www.sei.cmu.edu/architecture/consulting/qaw/
index.cfm (visited on 22nd of September, 2010).
the strength of being able to concretize driving quality attribute
requirements, but they also have a weakness of being optimistic
in change scenario elicitation due to the unpredictable nature of
changes as well as stakeholders’ short horizon in foreseeing future
changes [26]. Therefore, some architectural knowledge manage-
ment approaches can be used to complement scenario-based
methods and address this weakness through explicit representa-
tion of invariabilities to provide additional what–if scenarios. Eco-
nomic valuation methods can also be used to complement with
details on business consequences of architectural decisions. An-
other weakness of most scenario-based analysis methods is their
lack of a more fine-grained analysis [S58], although most of these
approaches are effective for high-level evaluation of an architec-
ture. Modeling techniques can thus be used to complement with
traceability information and visualization of impact analysis.

We have observed an initiative in research community to com-
bine appropriate techniques for software architecture evolution
[14,36]. As evolvability needs to be addressed over the complete
software lifecycle, it is necessary to combine appropriate ap-
proaches to manage this multifaceted attribute [S15].

5.2.4. Tailoring relevant approaches for individual development
contexts

For practitioners, this review presents a wide spectrum of ap-
proaches that analyze and improve software evolvability from spe-
cific perspectives. As described in Section 4, each approach
identified in the review has its specific application context that it
is appropriate for, such as the required input for commencement
when using an approach, the phase in the software lifecycle when
an approach is suitable, scope of analysis and output, etc. Thus, this
review can be used by practitioners as a source in searching for rel-
evant approaches. We suggest that the main consideration for
practitioners is to carefully examine the context and characteristics
of their own project, and compare with the application context and
constraints of a certain approach before adopting and tailoring the
approach into their own software development.

5.3. Validity threats

The main threats to validity in this systematic review are bias in
our selection of the studies to be included, and data extraction. To
be able to identify relevant studies and ensure that the process of
selection was unbiased, a research protocol was developed to de-
fine research questions, inclusion and exclusion criteria, and search
strategy. The review protocol was prepared by the first author, and
was then reviewed by the other two authors to check the formula-
tion of research questions, whether the search strings were appro-
priately derived from the research questions, and whether the data
to be extracted would address the research questions. The review
protocol was also reviewed by an external senior researcher (not
the author) from academia, who is experienced in systematic re-
view within the research group. In addition, an earlier version of
the paper was presented at an internal workshop within the re-
search group for additional feedbacks, especially on the inclusion
and exclusion criteria. For instance, in the beginning, we focused
mainly on research papers and excluded experience reports. How-
ever, one comment from the workshop was that we also need to
look into the experience reports to obtain a good understanding
of the maturity and applicability of the approaches regarding the
analysis and achievement of software evolvability at the architec-
tural level. These comments were then taken into consideration
when we started working on this article. One author is from acade-
mia, and the other two authors come from industry. The external
senior researcher and the participants at the internal workshop
were all from academia. Although the research protocol was re-
viewed by several senior researchers for feedback and was modi-

http://www.sei.cmu.edu/architecture/consulting/qaw/index.cfm
http://www.sei.cmu.edu/architecture/consulting/qaw/index.cfm

Fig. 4. Technology maturation classification of included studies.

Table 16
Study distribution per empirical method used (Categ. 1: quality consideration during
design; Categ. 2: quality evaluation at architectural level; Categ. 3: economic
valuation; Categ. 4: architectural knowledge management; Categ. 5: modeling
techniques).

Empirical
method

Categ. 1 Categ. 2 Categ. 3 Categ. 4 Categ. 5 Number %

Single-case in
industry

3 12 5 6 8 34 41.5

Single-case in
academia

1 1 2 6 5 15 18.3

Multiple-case 9 7 1 0 1 18 21.9
Theoretical

reasoning
1 0 3 4 2 10 12.2

Survey 1 2 0 2 0 5 6.1
Total 15 22 11 18 16 82 100

36 H.P. Breivold et al. / Information and Software Technology 54 (2012) 16–40

fied based on their comments to reduce the bias of the formaliza-
tion of the protocol, due to our choice of search terms, there is still
a risk that we might have missed some relevant studies, especially
in cases when some software engineering keywords are not stan-
dardized and clearly defined, such as definitions for various quality
attributes. We dealt with this threat by making sure that all the
researchers participating in this review had the same definition
in case of unclear terms, though in some cases it was hard to know
how the authors of the reviewed papers defined for example
adaptability or evolvability. Another threat is related to old publi-
cations that are probably only in paper format, and have not been
scanned and stored in the searched electronic databases.

To further ensure the unbiased selection of articles, we per-
formed a multi-step selection process to minimize the risk of
exclusion of relevant studies. All the three authors were involved
in the steps that concerned excluding studies based on the exclu-
sion criteria as well as excluding irrelevant studies based on their
titles and abstracts. We reviewed all the papers’ titles and ab-
stracts, and recorded independently the decisions if a paper would
be selected for the full-text screening step. Afterwards, to ensure
the reliability of inclusion decisions, we applied the Fleiss Kappa
statistic [15] to measure the agreement among us three authors.
The initial value of the Kappa statistics was 0.64 which is within
the range for significant agreement. Applying the Fleiss Kappa
method gave us very good input on papers that we had discrepan-
cies on, and thus, resulted in further discussions. Consequently,
each discrepancy was discussed and resolved, and thus we had full
agreement on studies that should be included for the final full-text
screening step. Throughout this selection process with discussions
on potential primary studies’ actual relevance, we had obtained a
clear view on how to judge a paper’s actual relevance for being in-
cluded as a primary study. Therefore, we decided that the first
author would take the lead in the full-text screening step, and facil-
itate the discussions that lead to the final paper selection for this
review. Besides, additional reference checking of the identified
studies was conducted to guarantee a representative set of studies
for the review.

To ensure correctness in data extraction, we defined a data
extraction form to obtain consistent extraction of relevant infor-
mation for answering the research questions. In addition, we per-
formed quality assessment on relevant studies to ensure that the
identified findings and implications came from a credible basis.
6. Conclusions

As business and technology evolve and software becomes more
complex, software development is increasingly faced with not only
how to create new software systems of the desired quality attri-
butes, but also, following the initial development, how to evolve
the systems in their operationally changing contexts. Given that
in most cases it is not desirable to develop everything from scratch
[34], researchers are constantly challenged to come up with
approaches to effectively support the evolution of software sys-
tems. The main objective of this review is to obtain a holistic view
of the existing studies in analyzing and achieving software evolv-
ability at architectural level. We have identified 82 primary stud-
ies, covering a spectrum of approaches with specific perspective
or focus on a particular architecture-centric activity in software
lifecycle. These approaches vary in terminology, descriptions,
artifacts and involved activities, yet beyond these differences, we
find approaches that share a lot in common, e.g. focus, goal and
application context. We extract these commonalities and summa-
rize the studies into five main categories of themes:

H.P. Breivold et al. / Information and Software Technology 54 (2012) 16–40 37
1. Quality considerations during design. The approaches in this cat-
egory are further refined into three sub-categories: quality
attribute requirement focused, quality attribute scenario
focused, and influencing factor focused. Most of the techniques
that support quality considerations during software architec-
ture design help identify key quality attribute requirements
early in the software design phase. Most studies address quality
attributes in general and not evolvability in particular.

2. Architectural quality evaluation. In the subsequent iteration
when an architecture starts to take form, architectural quality
evaluations help elicit and refine additional quality attribute
requirements and scenarios. The approaches in this category
are further refined into three sub-categories: experienced-
based, scenario-based and metric-based. A reflection on how
these studies are related to software evolvability is that most
studies focus on particular quality attributes such as adaptabil-
ity, and do not cover the wide spectrum of evolvability subchar-
acteristics. Few studies explicitly address software evolvability.
Even if the term evolvability is used in some studies, there is a
lack of precise definition or explanation of authors’ perception
on software evolvability.

3. Economic valuation. Economic valuation approaches provide
more details on architectural decisions’ business consequences,
and assist development teams in choosing among architectural
options. Most studies focus on a single quality attribute, e.g. sta-
bility, flexibility or modularity, and may exhibit a drawback in
architectural design decision-making process when multiple
evolvability subcharacteristics are involved, requiring explicit
management of preferences and tradeoffs among evolvability
subcharacteristics.

4. Architectural knowledge management. Architectural knowledge
management approaches improve architectural integrity by
enriching architecture documentation with architectural
knowledge captured from different information sources.

5. Modeling techniques. Modeling techniques add value by model-
ing software artefacts along with their traceability, and visual-
izing corresponding impact of the evolution of software
architecture artifacts. They do not explicitly focus on evolvabil-
ity in particular, but they help control and improve software
architecture evolution by modeling the relationships among
inter-dependent software artefacts.

This systematic review might have implications for both re-
search and practitioners. For researchers, the analysis of the pri-
mary studies indicates a number of challenges and topics for
future research: (i) there is a space to develop new foundation the-
ories beyond to Lehman’s law (for example quantitative expression
of evolvability, along with its measurement, monitoring, predic-
tion, impact analysis, and similar), with practical value to software
architecture evolution; (ii) it is also necessary to address the mul-
tifaceted perspectives of software evolvability through combining
appropriate approaches to complement each other as each ap-
proach has its specific focus and context that it is appropriate for
in a software lifecycle; (iii) considering that all artefacts produced
and used during the entire software lifecycle are subject to
changes, novel methods and tools need to be developed to be able
to design ultra-large-systems that integrate and orchestrate the
evolution of thousands of platforms, decision nodes, organizations
and processes [37]. For practitioners, they can use this review as a
source in searching for relevant approaches before adopting and
tailoring them by examining the context and characteristics of
their own software development, and comparing with the applica-
tion context of relevant approaches.

In future we can expect more research work in this area – in
addition to case studies we could expect more basic foundation re-

search and standardization of designing, and assessing evolvability,
probably enriched by different tools.
Appendix A. Studies included in the review
[S1]
 T. Al-Naeem, J. Gorton, M. Ali Babar, F. Rabhi, B.
Benatallah, A quality-driven systematic approach for
architecting distributed software applications, in:
International Conference on Software Engineering
(ICSE), 2005.
[S2]
 M. Ali Babar, I. Gorton, A tool for managing software
architecture knowledge, in: International Conference
on Software Engineering Workshop on Sharing and
Reusing architectural Knowledge-Architecture,
Rationale, and Design Intent, 2007.
[S3]
 M. Ali Babar, I. Gorton, R. Jeffery, Capturing and using
software architecture knowledge for architecture-
based software development, in: International
Conference on Quality Software (QSIC), 2005, pp.
169–176.
[S4]
 S. Anwar, M. Ramzan, A. Rauf, A. Ali Shahid, Software
maintenance prediction using weighted scenarios: an
architecture perspective, in: International Conference
on Information Science and Applications (ICISA),
2010.
[S5]
 M. Aoyama, Continuous and discontinuous software
evolution: aspects of software evolution across
multiple product lines, in: International Conference
on Software Engineering Workshop on Principles of
Software Evolution, 2001, pp. 87–90.
[S6]
 R. Bahsoon, W. Emmerich, ArchOptions: a real
options-based model for predicting the stability of
software architectures, in: International Conference
on Software Engineering Workshop on Economic-
Driven Software Engineering Research, 2003.
[S7]
 R. Bahsoon, W. Emmerich, Evaluating architectural
stability with real options theory, in: International
Conference on Software Maintenance, 2004, pp. 443–
447.
[S8]
 L. Bass, P. Clements, R. Kazman, Software Architecture
in Practice, Addison-Wesley Professional, 2003. ISBN
0321154959.
[S9]
 P. Bengtsson, J. Bosch, Architecture level prediction of
software maintenance, in: European Conference on
Software Maintenance and Reengineering (CSMR),
1999, pp. 139–147.
[S10]
 P. Bengtsson, J. Bosch, Scenario-based software
architecture reengineering, in: International
Conference on Software Reuse, 1998, pp. 308–317.
[S11]
 P. Bengtsson, N. Lassing, J. Bosch, H. van Vliet,
Architecture-level modifiability analysis (ALMA),
Journal of Systems and Software 69 (2004) 129–147.
[S12]
 S. Bhattacharya, D.E. Perry, Architecture
assessment model for system evolution, in:
Working IEEE/IFIP Conference on Software
Architecture (WICSA), 2007.
[S13]
 J. Bosch, Design and Use of Software Architectures:
Adopting and Evolving a Product-line Approach,
Addison-Wesley Professional, 2000. ISBN 0-201-
67494-7.
[S14]
 E. Bouwers, A. van Deursen, A lightweight sanity
check for implemented architectures, IEEE Software
27 (2010).
(continued on next page)

38 H.P. Breivold et al. / Information and Software Technology 54 (2012) 16–40
Appendix A (continued)

[S15]
 H.P. Breivold, I. Crnkovic, P.J. Eriksson, Analyzing
software evolvability, in: Annual IEEE International
Computer Software and Applications Conference
(COMPSAC), 2008.
[S16]
 H.P. Breivold, I. Crnkovic, R. Land, M. Larsson,
Analyzing software evolvability of an industrial
automation control system: a case study, in:
International Conference on Software Engineering
Advances (ICSEA), 2008.
[S17]
 R. Brcina, M. Riebisch, Architecting for evolvability by
means of traceability and features, in: International
Conference on Automated Software Engineering
(ASE) Workshops, 2008, pp. 72–81.
[S18]
 T.R. Browning, E.C. Honour, Measuring the life-cycle
value of enduring systems, Journal of Systems
Engineering 11 (2008).
[S19]
 W. Bu, A. Tang, J. Han, An analysis of decision-centric
architectural design approaches, in: International
Conference on Software Engineering Workshop on
Sharing and Reusing Architectural Knowledge
(SHARK), 2009.
[S20]
 J.E. Burge, D.C. Brown, Software engineering using
RATionale, Journal of Systems and Software 81 (2008)
395–413.
[S21]
 R. Capilla, F. Nava, J.C. Dueas, Modeling and
documenting the evolution of architectural design
decisions, in: International Conference on Software
Engineering Workshop on Sharing and Reusing
Architectural Knowledge-Architecture, Rationale, and
Design Intent, 2007.
[S22]
 R. Capilla, F. Nava, S. Pérez, J.C. Dueñas, A web-
based tool for managing architectural design
decisions, ACM SIGSOFT Software Engineering Notes
31 (2006).
[S23]
 J. Carriere, R. Kazman, I. Ozkaya, A cost-benefit
framework for making architectural decisions in a
business context, in: International Conference on
Software Engineering, 2010.
[S24]
 S.J. Carriere, R. Kazman, S.G. Woods, Assessing and
maintaining architectural quality, in: European
Conference on Software Maintenance and
Reengineering, 1999, pp. 22–30.
[S25]
 H.B. Christensen, K.M. Hansen, An empirical
investigation of architectural prototyping, Journal of
Systems and Software 83 (2010) 133–142.
[S26]
 L. Chung, K. Cooper, A. Yi, Developing adaptable
software architectures using design patterns: an NFR
approach, Computer Standards and Interfaces 25
(2003) 253–260.
[S27]
 L. Chung, B.A. Nixon, E. Yu, J. Mylopoulos, Non-
functional Requirements in Software Engineering,
Springer, 2000. ISBN 978-0-7923-8666-7.
[S28]
 L. Chung, N. Subramanian, Process-oriented metrics
for software architecture adaptability, in: IEEE
International Symposium on Requirements
Engineering, 2001, pp. 310–311.
[S29]
 P. Clements, L. Bass, Business goals as architectural
knowledge, in: International Conference on
Software Engineering Workshop on Sharing and
Reusing Architectural Knowledge (SHARK), 2010.
[S30]
 P. Clements, R. Kazman, M. Klein, Evaluating Software
Architectures: Methods and Case Studies, Addison-
Wesley, 2006, ISBN 0-201-70482-x.
Appendix A (continued)
[S31]
 X. Cui, Y. Sun, S. Xiao, H. Mei, Architecture design for
the large-scale software-intensive systems: a
decision-oriented approach and the experience, in:
International Conference on Engineering of Complex
Computer Systems (ICECCS), 2009.
[S32]
 R.C. de Boer, P. Lago, A. Telea, H. van Vliet, Ontology-
driven visualization of architectural design decisions,
in: Joint Working IEEE/IFIP Conference on Software
Architecture and European Conference on Software
Architecture (WICSA/ECSA), 2009.
[S33]
 C. Del Rosso, Continuous evolution through software
architecture evaluation: a case study, Journal of
Software Maintenance and Evolution 18 (2006) 351–
383.
[S34]
 C. Del Rosso, A. Maccari, Assessing the architectonics
of large, software-intensive systems using a
knowledge-based approach, in: Working IEEE/IFIP
Conference on Software Architecture (WICSA), 2007.
[S35]
 A. Engel, T.R. Browning, Designing systems for
adaptability by means of architecture options, Journal
of Systems Engineering 11 (2008).
[S36]
 R. Farenhorst, R. Izaks, P. Lago, H. van Vliet, A just-in-
time architectural knowledge sharing portal, in:
Working IEEE/IFIP Conference on Software
Architecture (WICSA), 2008, pp. 125–134.
[S37]
 E. Fricke, B. Gebhard, H. Negele, E. Igenbergs, Coping
with changes: Causes, findings, and strategies, Journal
of Systems Engineering 3 (2000) 169–179.
[S38]
 E. Fricke, A.P. Schulz, Design for changeability (DfC):
principles to enable changes in systems throughout
their entire lifecycle, Journal of Systems Engineering
8 (2005).
[S39]
 D. Garlan, J.M. Barnes, B. Schmerl, O. Celiku, Evolution
styles: foundations and tool support for software
architecture evolution, in: Joint Working IEEE/IFIP
Conference on Software Architecture and European
Conference on Software Architecture, 2009.
[S40]
 S. Giesecke, W. Hasselbring, M. Riebisch, Classifying
architectural constraints as a basis for software
quality assessment, Advanced Engineering
Informatics 21 (2007) 169–179.
[S41]
 M.O. Hassan, L. Deruelle, H. Basson, A knowledge-
based system for change impact analysis on software
architecture, in: International Conference on
Research Challenges in Information Science, 2010.
[S42]
 C. Hofmeister, R. Nord, D. Soni, Applied Software
Architecture: A Practical Guide for Software
Designers, Addison-Wesley Professional, 2000. ISBN
0201325713.
[S43]
 A. Jansen, P. Avgeriou, J.S. van der Ven, Enriching
software architecture documentation, Journal of
Systems and Software 82 (2009) 1232–1248.
[S44]
 A. Jansen, J. Bosch, P. Avgeriou, Documenting after
the fact: Recovering architectural design decisions,
Journal of Systems and Software 81 (2008)
536–557.
[S45]
 A. Jansen, J. Van der Ven, P. Avgeriou, D.K. Hammer,
Tool support for architectural decisions, in: Working
IEEE/IFIP Conference on Software Architecture
(WICSA), 2007.
[S46]
 R. Kazman, J. Asundi, M. Klein, Quantifying the costs
and benefits of architectural decisions, in: Interna-
tional Conference on Software Engineering, 2001.

H.P. Breivold et al. / Information and Software Technology 54 (2012) 16–40 39

Appendix A (continued)
[S47]
R. Kazman, L. Bass, G. Abowd, M. Webb, SAAM: a
method for analyzing the properties of software
architectures, in: International Conference on
Software Engineering, 1994, pp. 81–90.
[S48]
 R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H.
Lipson, J. Carriere, The architecture tradeoff analysis
method, in: IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS),
1998, pp. 68–78.
[S49]
 S. Kim, D.K. Kim, L. Lu, S. Park, Quality-driven
architecture development using architectural tactics,
Journal of Systems and Software 82 (2009) 1211–1231.
[S50]
 M. Klein, R. Kazman, L. Bass, J. Carriere, M. Barbacci, H.
Lipson, Attribute-based architecture styles, in:
Working IEEE/IFIP Conference on Software
Architecture (WICSA), 1999.
[S51]
 P. Lago, H. Muccini, H. van Vliet, A scoped approach to
traceability management, Journal of Systems and
Software 82 (2009) 168–182.
[S52]
 P. Lago, H. van Vliet, Explicit assumptions enrich
architectural models, in: International Conference on
Software Engineering, 2005, pp. 206–214.
[S53]
 N. Lassing, P. Bengtsson, H. van Vliet, J. Bosch,
Experiences with ALMA: architecture-level
modifiability analysis, Journal of Systems and
Software 61 (2002) 47–57.
[S54]
 N. Lassing, D. Rijsenbrij, H. van Vliet, How well can we
predict changes at architecture design time?, Journal
of Systems and Software 65 (2003) 141–153.
[S55]
 J. Lee, D.H. Lee, Quantitative tradeoff analysis of
software architecture using the architecture analysis
and design language, in: ACIS International
Conference on Software Engineering, Artificial
Intelligences, Networking and Parallel/Distributed
Computing, 2009.
[S56]
 M.M. Lehman, J.F. Ramil, P.D. Wernick, D.E. Perry,
W.M. Turski, Metrics and laws of software evolution –
the nineties view, in: 4th International Symposium
on Software Metrics, 1997.
[S57]
 X. Liu, Q. Wang, Study on application of a quantitative
evaluation approach for software architecture
adaptability, in: International Conference on Quality
Software (QSIC), 2005, pp. 265–272.
[S58]
 C. H. Lung, S. Bot, K. Kalaichelvan, R. Kazman, An
approach to software architecture analysis for
evolution and reusability, in: Conference of the
Centre for Advanced Studies on Collaborative
Research, IBM Center for Advanced Studies
Conference, 1997.
[S59]
 T. Marew, J.S. Lee, D.H. Bae, Tactics based approach
for integrating non-functional requirements in
object-oriented analysis and design, Journal of
Systems and Software 82 (2009) 1642–1656.
[S60]
 A. Mubin, D. Ray, R. Rahman, Architecting an
evolvable system by iterative object-process
modeling, World Congress on Computer Science and
Information Engineering (CSIE), 2009.
[S61]
 E.C. Nistor, A. van der Hoek, Explicit concern-driven
development with ArchEvol, in: IEEE/ACM
International Conference on Advanced Software
Engineering, 2009.
[S62]
 F.G. Olumofin, V.B. Misic, A holistic architecture
assessment method for software product lines,
Appendix A (continued)
Information and Software Technology 49 (2007) 309–
323.
[S63]
 E. Ovaska, A. Evesti, K. Henttonen, M. Palviainen, P.
Aho, Knowledge based quality-driven architecture
design and evaluation, Journal of Information and
Software Technology 52 (2010) 577–601.
[S64]
 I. Ozkaya, R. Kazman, M. Klein, Quality-Attribute
Based Economic Valuation of Architectural Patterns,
International Workshop on the Economics of
Software and Computation, 2007.
[S65]
 C. Pahl, S. Giesecke, W. Hasselbring, Ontology-based
modeling of architectural styles, Journal of
Information and Software Technology 51 (2009)
1739–1749.
[S66]
 D. Port, L. Huang. Strategic architectural flexibility, in:
International Conference on Software Maintenance
(ICSM), 2003, pp. 389–396.
[S67]
 J.F. Ramil, M.M. Lehman, Metrics of software
evolution as effort predictors – a case study, in:
International Conference on Software Maintenance
(ICSM), 2000, pp. 163–172.
[S68]
 R. Roeller, P. Lago, H. van Vliet, Recovering
architectural assumptions, Journal of Systems and
Software 79 (2006) 552–573.
[S69]
 G. Scanniello, A. D’Amico, C. D’Amico, T. D’Amico,
Architectural layer recovery for software system
understanding and evolution, Software: Practice and
Experience 40 (2010) 897–916.
[S70]
 M. Shahin, P. Liang, M. Reza, Improving
understandability of architecture design through
visualization of architectural design decision, in:
International Conference on Software Engineering
Workshop on Sharing and Reusing Architectural
Knowledge (SHARK), 2010.
[S71]
 N. Subramanian, L. Chung, Process-oriented metrics
for software architecture evolvability, International
Workshop on Principles of Software Evolution, 2003,
pp. 65–70.
[S72]
 K.J. Sullivan, W.G. Griswold, Y. Cai, B. Hallen, The
structure and value of modularity in software design,
in: European Software Engineering Conference held
jointly with 9th ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
2001, pp. 99–108.
[S73]
 M. Svahnberg, An industrial study on building
consensus around software architectures and quality
attributes, Information and Software Technology 46
(2004) 805–818.
[S74]
 L. Tahvildari, K. Kontogiannis, J. Mylopoulos, Quality-
driven software re-engineering, Journal of Systems
and Software 66 (2003) 225–239.
[S75]
 T. Tamai, Y. Torimitsu, Software lifetime and its
evolution process over generations, in: International
Conference on Software Maintenance, 1992, pp. 63–69.
[S76]
 D. Tamzalit, T. Mens, Guiding architectural
restructuring through architectural styles, in:
International Conference and Workshops on
Engineering of Computer-Based Systems (ECBS),
2010.
[S77]
 A. Tang, M. Ali Babar, I. Gorton, J. Han, A survey of
architecture design rationale, Journal of Systems and
Software 79 (2006) 1792–1804.
(continued on next page)

40 H.P. Breivold et al. / Information and Software Technology 54 (2012) 16–40
Appendix A (continued)

[S78]
 A. Tang, P. Avgeriou, A. Jansen, R. Capilla,
M. Ali-Babar, A comparative study of architecture
knowledge management tools, Journal of Systems
and Software 83 (2009) 352–370.
[S79]
 P. Tarvainen, Adaptability evaluation of software
architectures: a case study, in: Annual International
Computer Software and Applications Conference
(COMPSAC), 2007, pp. 579–584.
[S80]
 M. van den Berg, A. Tang, R. Farenhorst, A constraint-
oriented approach to software architecture design,
International Conference on Quality Software,
2009.
[S81]
 W.M.N. Wan-Kadir, P. Loucopoulos, Relating evolving
business rules to software design, Journal of Systems
Architecture 50 (2004) 367–382.
[S82]
 L. Zhu, M. Ali Babar, R. Jeffery, Mining patterns to
support software architecture evaluation, in:
Working IEEE/IFIP Conference on Software
Architecture (WICSA), 2004, pp. 25–34.
References

[1] OSS/BSS Reference Architecture and Its Implementation Scenario for Fulfill-
ment. <http://www.nokia.com/NOKIA_COM_1/About_Nokia/Press/White_
Papers/pdf_files/nokia_tietoenator_0605_net.pdf> (visited February 2011).

[2] A. Avritzer, E.J. Weyuker, Metrics to assess the likelihood of project success
based on architecture reviews, Empirical Software Engineering 4 (3) (1999)
199–215.

[3] F. Bachmann, M. Goedicke, J. Leite, R. Nord, K. Pohl, B. Ramesh, A. Vilbig, A
meta-model for representing variability in product family development,
Lecture Notes in Computer Science 3014 (2004) 66–80.

[4] C.Y. Baldwin, K.B. Clark, Design Rules: The Power of Modularity, vol. 1, MIT
Press, Cambridge, 2000. ISBN 0-262-02466-7.

[5] J. Bayer, J.F. Girard, M. Wurthner, J.M. DeBaud, M. Apel, Transitioning legacy
assets to a product line architecture, Lecture Notes in Computer Science 687
(1999) 446–463.

[6] K. Bennett, Software evolution: past, present and future, Information and
Software Technology 38 (11) (1996) 673–680.

[7] K. Bennett, V.T. Rajlich, Software maintenance and evolution: a roadmap, in:
Conference on the Future of Software Engineering at International Conference
on Software Engineering, 2000, pp. 73–87.

[8] I. Borne, S. Demeyer, G.H. Galal, Object-oriented architectural evolution, in:
European Conference on Object-Oriented Programming, 1999.

[9] J. Bosch, Design and Use of Software Architectures: Adopting and Evolving a
Product-Line Approach, Addison-Wesley, 2000. ISBN 978-0-201-67494-1.

[10] F.P. Brooks, No silver bullet, IEEE Computer 20 (4) (1987) 10–19.
[11] Y. Cai, S. Huynh, An evolution model for software modularity assessment,

International Workshop on Software Quality, 2007.
[12] H. Cervantes, R.S. Hall, Autonomous adaptation to dynamic availability using a

service-oriented component model, in: 26th International Conference on
Software Engineering, 2004.

[13] L. Chung, Non-Functional Requirements in Software Engineering, Springer,
2000. ISBN 978-0-7923-8666-7.

[14] D. Falessi, R. Capilla, G. Cantone, A value-based approach for documenting
design decisions rationale: a replicated experiment, International Workshop
on Sharing and Reusing Architectural Knowledge, 2008.

[15] J.L. Fleiss, Measuring nominal scale agreement among many raters,
Psychological Bulletin 76 (5) (1971) 378–382.

[16] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995. ISBN 0-201-
63361-2.

[17] D. Garlan, Software architecture: a roadmap, in: Conference on the Future of
Software Engineering, 2000.

[18] M. Jiang, A. Willey, Architecting systems with components and services, in:
International Conference on Information Reuse and Integration, 2005.

[19] K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, A.S. Peterson, Feature-Oriented
Domain Analysis (FODA) Feasibility Study, CMU/SEI-090-TR-21, Software
Engineering Institute, Carnegie-Mellon University, 1990.

[20] K.C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, M. Huh, FORM: a feature-; oriented
reuse method with domain-; specific reference architectures, Annals of
Software Engineering 5 (1998).

[21] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, J. Carriere, The
architecture tradeoff analysis method, in: IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS), 1998.
[22] D.K. Kim, R. France, S. Ghosh, E. Song, A role-based metamodeling approach to
specifying design patterns, in: IEEE International Computer Software and
Applications Conference (COMPSAC), 2003.

[23] B. Kitchenham, Procedures for Performing Systematic Reviews, TR/SE-0401/
NICTA, Technical Report 0400011T, Keele University, 2004.

[24] P. Kruchten, P. Lago, H. van Vliet, Building up and reasoning about
architectural knowledge, in: International Conference on the Quality of
Software Architecture (QoSA), 2006.

[25] R. Land, I. Crnkovic, Software systems in-house integration: architecture,
process practices and strategy selection, Journal of Information and Software
Technology 49 (5) (2006) 419–444.

[26] N. Lassing, D. Rijsenbrij, H. van Vliet, How well can we predict changes at
architecture design time?, Journal of Systems and Software 65 (2) (2003) 141–
153.

[27] M.M. Lehman, J.F. Ramil, G. Kahen, Evolution as a noun and evolution as a verb,
Workshop on Software and Organisation Co-Evolution (SOCE), 2000, pp. 12–
13.

[28] A. Maccari, Experiences in assessing product family software architecture for
evolution, in: International Conference on Software Engineering, 2002, pp.
585–592.

[29] A. Maccari, C. Riva, Architectural evolution of legacy product families, Lecture
Notes in Computer Science 2290 (2002).

[30] N.H. Madhavji, J. Fernandez-Ramil, D. Perry, Software Evolution and
Feedback: Theory and Practice, John Wiley & Sons, 2006. ISBN 978-0-470-
87180-5.

[31] M. Matinlassi, Quality-driven software architecture model transformation, in:
Working IEEE/IFIP Conference on Software Architecture (WICSA), 2005.

[32] M. Mattsson, H. Grahn, F. Mårtensson, Software architecture evaluation
methods for performance, maintainability, testability, and portability, in:
International Conference on the Quality of Software Architecture (QoSA),
2006.

[33] N. Medvidovic, R.N. Taylor, D.S. Rosenblum, An architecture-based approach to
software evolution, International Workshop on the Principles of Software
Evolution, 1998.

[34] T. Mens, S. Demeyer, Software Evolution, Springer, 2008. ISBN 978-3-540-
76439-7.

[35] C. L. Nehaniv, P. Wernick, Introduction to software evolvability, International
Workshop on the Principles of Software Evolution (IWPSE), 2007.

[36] R.L. Nord, W.G. Wood, P. Clements, Integrating the Quality Attribute Workshop
(QAW) and the Attribute-Driven Design (ADD) Method, Technical Report CMU/
SEI-2004-TN-017, Software Engineering Institute, Carnegie Mellon University,
2004.

[37] L. Northrop, P.H. Feiler, B. Pollak, D. Pipitone, Ultra-Large-Scale Systems: The
Software Challenge of the Future, Software Engineering Institute, Carnegie
Mellon University, 2006. ISBN 0-9786956-0-7.

[38] L. O’Brien, P. Merson, L. Bass, Quality attributes for service-oriented
architectures, International Workshop on Systems Development in SOA
Environments, 2007.

[39] K. Pohl, G. Böckle, F. van der Linden, Software Product Line Engineering:
Foundations, Principles, and Techniques, Springer, 2005. ISBN 978-3-540-
24372-4.

[40] S.T. Redwine Jr., W.E. Riddle, Software technology maturation, in: International
Conference on Software Engineering, 1985.

[41] D. Rowe, J. Leaney, Evaluating evolvability of computer based systems
architectures – an ontological approach, in: International Conference and
Workshops on Engineering of Computer-Based Systems (ECBS), 1997, pp. 24–
28.

[42] D. Rowe, J. Leaney, D. Lowe, Defining systems evolvability-a taxonomy of
change, in: International Conference and Workshops on Engineering of
Computer-Based Systems (ECBS), 1998.

[43] K. Schmid, I. John, R. Kolb, G. Meier, Introducing the PuLSE approach to an
embedded system population at Testo, AG, in: 27th International Conference
on Software Engineering, 2005.

[44] D. Smith, L. O’Brien, J. Bergey, Using the options analysis for reengineering
(OAR) method for mining components for a product line, Lecture Notes in
Computer Science 2379 (2002).

[45] C. Stoermer, L. O’Brien, MAP – mining architectures for product line
evaluations, in: Working IEEE/IFIP Conference on Software Architecture, 2001.

[46] K.J. Sullivan, P. Chalasani, V. Sazawal, Software design as an investment
activity: a real options perspective, Real Options and Business Strategy:
Applications to Decision Making (1999) 215–262.

[47] S.A. Tonu, A. Ashkan, L. Tahvildari, Evaluating architectural stability using a
metric-based approach, in: Conference on Software Maintenance and
Reengineering (CSMR), 2006.

[48] F. van der Linden, J. Bosch, E. Kamsties, K. Kansala, H. Obbink, Software product
family evaluation, Lecture Notes in Computer Science 3154 (2004).

[49] J. van Gurp, J. Bosch, Design erosion: problems and causes, Journal of Systems
and Software 61 (2) (2002) 105–119.

[50] G. Wang, C. K. Fung, Architecture paradigms and their influences and impacts
on component-based software systems, in: 37th Annual Hawaii International
Conference on System Sciences, 2004.

[51] N.H. Weiderman, J.K. Bergey, D.B. Smith, S.R. Tilley, Approaches to Legacy
System Evolution, Carnegie-Mellon University, Software Engineering Institute,
Technical Report CMU/SEI-97-TR-014, 1997.

[52] L. Yu, S. Ramaswamy, J. Bush, Symbiosis and software evolvability, IT
Professional 10 (4) (2008) 56–62.

http://www.nokia.com/NOKIA_COM_1/About_Nokia/Press/White_Papers/pdf_files/nokia_tietoenator_0605_net.pdf
http://www.nokia.com/NOKIA_COM_1/About_Nokia/Press/White_Papers/pdf_files/nokia_tietoenator_0605_net.pdf

	A systematic review of software architecture evolution research
	1 Introduction
	2 Research method
	2.1 Review protocol
	2.2 Inclusion and exclusion criteria
	2.3 Search process
	2.4 Quality assessment
	2.5 Data extraction and synthesis

	3 Overview of the included studies
	3.1 Data sources
	3.2 Citation status
	3.3 Temporal view
	3.4 Active research communities

	4 Results
	4.1 Quality considerations during software architecture design
	4.1.1 Quality attribute requirement-focused
	4.1.1.1 Relevance to software evolvability

	4.1.2 Quality attribute scenario-focused
	4.1.2.1 Relevance to software evolvability

	4.1.3 Influencing factor-focused
	4.1.3.1 Relevance to software evolvability

	4.2 Quality evaluation at software architecture level
	4.2.1 Experience-based
	4.2.1.1 Relevance to software evolvability

	4.2.2 Scenario-based
	4.2.2.1 Relevance to software evolvability

	4.2.3 Metric-based
	4.2.3.1 Relevance to software evolvability

	4.3 Economic valuation in determining level of uncertainty
	4.3.1 Relevance to software evolvability

	4.4 Architectural knowledge management
	4.4.1 Relevance to software evolvability

	4.5 Modeling techniques
	4.5.1 Relevance to software evolvability

	5 Discussions
	5.1 Scope of the systematic review
	5.2 Impacts on research and practice
	5.2.1 Technology maturation
	5.2.2 Theoretical foundation and formalization to software architecture evolution
	5.2.3 Combining approaches to address multifaceted perspectives of software evolvability
	5.2.4 Tailoring relevant approaches for individual development contexts

	5.3 Validity threats

	6 Conclusions
	Appendix A Studies included in the review
	References

