
Using a genetic algorithm for mining patterns from
Endgame Databases

Heriniaina Andry RABOANARY
Department of Computer Science

Institut Supérieur Polytechnique

de Madagascar

Antananarivo – Madagascar

Email: andry.raboanary@gmail.com

Julien Amédée RABOANARY
Department of Computer Science

Institut Supérieur Polytechnique

de Madagascar

Antananarivo – Madagascar

Email: julien.raboanary@gmail.com

Toky Hajatiana RABOANARY
Department of Computer Science

Institut Supérieur Polytechnique

de Madagascar

Antananarivo – Madagascar

Email: toky.raboanary@gmail.com

Abstract—Tic-tac-toe and Fanorona games are ones that can
be played at an extremely high level by computer engines.
Endgame databases are powerful tools to create these engines.
These Endgame databases contain precious informations about
how to play the game. Unfortunately, it is quite impossible
for human players to learn the game strategies from endgame
databases, which are only made of raw sequences of bits. The
work presented here is the use of genetic algorithms to extract
human friendly knowledge from these databases.

Index Terms—Board games, Fanorona, tic-tac-toe, Endgame
Databases, genetic algorithms, Knowledge Discovery.

I. INTRODUCTION

Solving games and creating high level artificial intelligence

engines is an exciting, and challenging task for any game

oriented artificial intelligence researcher [1]–[3]. Many board

games are now at least weakly solved and played by computer

engines, at least, at a world-championship level. These engines

contain then the power and the knowledge to play these games

almost perfectly, at least at the mid-game and the endgame.

But, it is still quite impossible for human beings, even pro-

grammers, to get any knowledge from an artificial intelligence

engine. Some of the computer AI1 strengths such as computing

speed, perfect memory could never be acquired by human

players. Mostly, in any game AI engine, the part containing

the most substantial knowledge is the Endgame Database.

An Endgame Database is a list of any possible positions for

a given set of pieces on the board2 paired with the theoretical

outcome of each positions. That is to say, whether a given

position is a win, a loss or a draw, assuming perfect play

from both players. Endgame Databases are most of the time

created by retrograde analysis.

We present here a method of extracting useful knowledge

from Databases and Endgame datasets. Our main goal is to

extract knowledge for human players to learn Fanorona. Our

work can be divided into five parts:

• Description of the two games

• Description of the mining process

• Experiments with tic-tac-toe
• Experiments with Fanorona

1Artificial Intelligence
2for example 3 white stones against 2 black stones

Figure 1. tic-tac-toe sample positions

• General discussions and future research

II. TIC-TAC-TOE IN A FEW WORDS

Tic-tac-toe is a simple game played by two players: X and

O. The board is represented by the figure 1. The goal is to align

tree of your own Symbol X or O. Because it is a well-known

game, there is no need to develop too much this section.

A. Rules

Usually, the player X plays first. The two players play

alternately, the first player capable of aligning tree of his own

symbol wins the game. If such alignment is impossible for

both players, the game ends into a draw.

B. Complexity Analysis

We are now going to perform a complexity analysis of tic-

tac-toe game, which quantifies “how difficult it is to play tic-

tac-toe”.

1) Number of moves - Game tree complexity: There are

only 9 ply moves possibles at most, because the board is full

afterwards. At the opening, the player X has 9 possibilities;

the player O has 8 possibilities; after what X has 7 possibilities

left, and so on. The game tree complexity of the tic-tac-toe is

then

log(9× 8× 7× ...× 2× 1) = log(9!) ≈ 5.56 (1)

2012 African Conference for Sofware Engineering and Applied Computing

978-0-7695-4909-5/12 $26.00 © 2012 IEEE

DOI 10.1109/ACSEAC.2012.24

94

Figure 2. tic-tac-toe rotations-equivalent states

Figure 3. tic-tac-toe Symmetric states

2) State-space complexity: Each spot on the tic-tac-toe

board can be blank, X or O. Thus, there might be 39 states

possible in the game. But, this is only an upper bound because

illegal positions and unreachable positions (such as X at every

spot) are taken account. Moreover, rotations (figure 2) and

symmetries (figure 3) yield many equivalent states. There are

thus 765 unique states in tic-tac-toe according to [4].We have,

then, thestate-space complexity of

log(765) ≈ 2.88 (2)

III. A SHORT DESCRIPTION OF FANORONA

Fanorona is a two player, zero-sum and perfect informa-

tion board game which complexity has been classified to be

between Checkers and Chess.

The following is a very short description of Fanorona, a

more detailed description can be found in [5].

A. The board

The most well-known variant of the FANORONA is played

on a 9×53 board, named Akalana which is illustrated in

the figure 4. It has similarities with Alquerque’s board. Each

intersection is a spot to place a stone and each line represent

movement that can be followed by a stone.

Each player has 22 stones at the start position as shown in

figure 4 and the goal in the game is to capture all opponent’s

stones.

39 columns and 5 rows

1

2

3

4

5

a b c d e f g h i

1

2

3

4

5

a b c d e f g h i

1

2

3

4

5

a b c d e f g h i

1

2

3

4

5

a b c d e f g h i

1

2

3

4

5

a b c d e f g h i

1

2

3

4

5

a b c d e f g h i

1

2

3

4

5

a b c d e f g h i

1

2

3

4

5

a b c d e f g h i

1

2

3

4

5

a b c d e f g h i

Figure 4. Fanorona Board and initial position

B. Game Rules

The two players moves alternatively. White plays first.

A move is made of one or more movements of a single

stone. Each movement consists of moving a stone along the

lines from an intersection to another next to it. According to

the situation, there might be capture or not. We distinguish

two types of moves: capture moves and shuffle moves.

1) Capture moves: A player can capture his opponent’s

stone by approach or withdrawal. When an opponent stone is

captured, all the stones in the entire continuous set of adjacent

opponent stones on the line are captured as well.

If both withdrawal and approach are available simultane-

ously, the moving player must choose which kind of capture

he wants.

If, after a capture movement, capture is still available for

the moving stone, the player may continue to capture with this

same stone.

While capturing, the moving stone may not:

• return to an intersection that has already been visited

during the move;

• be moved successively to the same direction.

When there is a capture move available, the player must
play a capturing move.

2) Shuffle moves: When no capture moves are available, the

player may just move one stone along the line to an adjacent

empty intersection. Shuffle moves are also called paika.

C. Complexity Analysis

It is important to quantify the game’s complexity as it

allows us to know how difficult is a game and also to know

which techniques are suitable for the game. According to [6],

Fanorona has a game-tree complexity of

log(10.332.84) ≈ 40 (3)

and a state-space complexity of

log

(
22∑

w=0

22∑
b=0

(
45

w

)
×
(

45− w

b

))
≈ 21.46 (4)

It comes out that Fanorona is more difficult than checkers
and awari and is easier than chess and go.

95

IV. DESCRIPTION OF THE MINING PROCESS

A. Comparing tic-tac-toe and Fanorona

The following table gives us an overview of the complexity

of Fanorona and tic-tac-toe compared to each other, and with

other games4 :

Game Game-tree State-space

tic-tac-toe 5 3

checkers 31 18

fanorona 40 21

chess 123 47

It comes out that Fanorona is much more difficult than tic-
tac-toe.

B. What is a genetic algorithm ? [7]

A genetic algorithm is a search heuristic based on the

process of natural evolution. It is routinely used to gen-

erate useful solutions to optimization and search problems.

Techniques used here are inspired by natural evolution, such

as inheritance, mutation, selection, and crossover.The basic

process is as follows :

The genetic algorithm process

C. Use of JGAP [8]

JGAP or Java Genetic Algorithm Package is an open

source genetic algorithm framework. It provides basic genetic

mechanisms that can be easily used to apply evolutionary

principles to problem solutions. JGAP is a powerful package

with many kinds of genetic operators included, but it provides

as well the possibility to create customized genes, operator,

natural selector, . . .

D. Description of Genes

1) Binary Arrays: A gene in our program is made of a low

level binary array, which is represented by a long integer vari-

able, which can be manipulated with bitwise operations.The

size of the binary array is equal to the number of spots in the

board.

4these are rounded values

• For the tic-tac-toe we use an array of 9 bits,

• For the Fanorona we use an array of 45 bits.

2) First configuration: For our first configuration, we have

one gene which is a binary array like described in IV-D1. This

gene indicates the suitable spots for our player.

3) Second configuration: For our second configuration, we

have two genes, where the first gene is just like described in

IV-D2. The second gene is a binary array just like described

in IV-D1, which indicates the positions taken by the opponent.

E. Description of Operators

1) The Crossover: The crossover operator that we used is

a an operator that operates at the bit level, the swapped bits

are selected randomly. For example, in the following figure,

the bits 1 and 3 are swapped.

Chromosomes A and B before crossover

Chromosomes A and B after crossover

2) The Mutation: The mutation operator that we used is a

an operator that operates at the bit level, the flipped bits are

selected randomly. For example, in the following figure, the

bit 4 is changed from 0 to 1 because of the mutation.

Mutation effect over Chromosome A

F. Fitness function

The base of our study is to find the set of spots that carries

the most information. Our fitness function is then based on the

entropy function and the infogain from the ID3 decision-tree

induction algorithm [9]. The information entropy E of a set

S is given by

E(S) = −
n∑

j=1

fS(j) log2 fS(j) (5)

96

where :

• n is the number of different values of the expected

outcomes5 in S
• fS(j) is the frequency (proportion) of the value j in the

set S.

G. Hardware and software specifications

We used personal computer equipped with an Intel Core

2 Quad Q9400 2.8Ghz, with 4GB of RAM. The program is

written in JAVA using the Netbeans IDE.

V. EXPERIMENTS WITH THE TIC-TAC-TOE GAME

As we saw earlier, the tic-tac-toe is an extremely easy game

to play. Therefore, there is no need to extract knowledge from

any database to learn to play well the game. In fact, our interest

in this game is the fact that we can validate and tune the

process. Indeed, as human players knowing how to play the

game, it is easy for us to validate the output patterns. In that

sense, the tic-tac-toe game is used to verify and tune up our

learning process.

A. The Dataset

The dataset used for our training came from the UCI

repository [10]. It contains 958 instances of data. Each instance

is made of 9 attributes corresponding to every position in

the tic-tac-toe board; and the class, which has two values :

positive or negative which indicates the theoretical outcome

of the board state. Positive means win for X.

positive (win for X) 65,3

negative (else) 34,7

B. Results for the first configuration

1) Convergence speed: The plotting below represents the

convergence speed of the average fitness value. The population

size used is 1000.

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

Generation

Convergence of fitness - Average fitness

5in our case : n=2 (positive, negative) or n=3 (win, loss, draw)

We can conclude that the convergence was extremely fast.

This is due to the fact that the state space of the problem is

extremely small.

2) Resulting patterns: We give in the figure below the four

best patterns mined from the dataset. The ‘X’s indicate the

important set of spots that we must consider.

Best patterns throughout generations

We can conclude that we have excellent results. Indeed, each

pattern gives us immediately ideas subsequent strategy to

apply for achieving easily a win.

C. Results for the second configuration

In the first configuration, the patterns concern only our

positions. But, in the second configuration, a pattern concerns

both our positions and our opponent’s.

1) Convergence speed: The convergence speed is similar

than in the first configuration, but slightly slower, as shown in

the following:

0 20 40 60

0

0.2

0.4

0.6

0.8

1

Generation

Convergence of fitness - Average fitness

2) Resulting patterns: We give in the figure below the

four best patterns mined from the dataset. The ‘X’s indicate

the important set of spots that we must consider when the

opponent occupies the ‘O’s.

97

Best patterns throughout generations

While patterns presented in V-B2 are extremely clear and

straightforward, the patterns obtained here are not as clear.

They may be correct in a mathematical point of view, but, they

aren’t much useful for learning. Some improvements might be

necessary to create a more human-friendly representation.

VI. EXPERIMENTS WITH THE FANORONA GAME

Fanorona is much difficult than tic-tac-toe. Moreover, there

is almost no literature about Fanorona tactics. So, we are going

to apply some successful techniques from the tic-tac-toe game

in order to acquire knowledge for Fanorona.

A. Endgame databases

We use the endgame databases used in [6], which are

powerful and were useful to weakly solve the game. Theses

databases contain all positions with 7 stones or less.

The following table gives us the distribution6 of win, draw

or loss for each part of the databases.

Db. 1-1 2-1 1-2

Win 158 10,366 717

Draw 334 398 3,231

Loss 26 6 6,822

Db. 3-1 2-2 1-3

Win 149,458 127,756 4,188

Draw 91 79,012 15,85

Loss 1 17,386 129,487

Db. 4-1 3-2 2-3 4-1

Win 1,529,142 2,711,327 774,043 19,814

Draw 12 327,836 1,252,162 88,187

Loss 0 18,297 1,031,255 1,421,153

Db. 5-1 4-2 3-3

Win 12,223,788 30,095,407 24,137,779

Draw 0 426,350 13,995,354

Loss 0 32,491 2,644,731

6a-b means a stones versus b stones

Db. 2-4 1-5

Win 4,180,200 81,728

Draw 7,926,733 391,405

Loss 18,447,315 11,750,655

Db. 6-1 5-2 4-3

Win 79,431,164 237,393,018 344,370,238

Draw 0 774,868 46,020,564

Loss 0 108,614 6,724,158

Db. 3-4 2-5 1-6

Win 145,408,435 18,659,090 320,021

Draw 170,633,688 41,896,491 1,509,775

Loss 81,072,837 177,720,919 77,619,368

In total, there are 6,261,651,750 positions in our databases.

B. Results for the first configuration

1) Convergence speed: We ran our algorithm on the 2-2

database. The plotting below represents the convergence speed

of the average fitness value. The population size used is 1000.

0 50 100 150 200

0

0.2

0.4

0.6

0.8

1

Generation

Convergence of fitness - Average fitness

The convergence is much slower than in the tic-tac-toe’s

experiments.

2) Resulting patterns: We give in the figure below the five

of the best patterns mined from the 2-2 database.

1

2

3

4

5

a b c d e f g h i

Fanorona pattern 1

98

1

2

3

4

5

a b c d e f g h i

Fanorona pattern 2

1

2

3

4

5

a b c d e f g h i

Fanorona pattern 3

1

2

3

4

5

a b c d e f g h i

Fanorona pattern 4

1

2

3

4

5

a b c d e f g h i

Fanorona pattern 5

The experiment results in some very interesting patterns;

because they are in the same time effective and human friendly.

Unfortunately, there are some patterns, such as pattern 5,

that are very difficult to understand, even if they having a good

fitness value. We could for example adjust the fitness value to

give priority to human friendly patterns (by adding a bonus to

symmetric patterns for example; or adding bonus to patterns

with less stones).

C. Results for the second configuration

We did not ran the second configuration on the Fanorona

because of the relatively poor results from the tic-tac-toe

experiments.

VII. RELATED WORKS

• Quinlan proposed the ID3 algorithm [9], which aimed to

create decision-tree based state evaluator.

• Breda in his Ph D Thesis [11] exploited the J48 algorithm,

which is a decision-tree induction algorithm, to extract

knowledge from chess endgame databases.

• Bhatt and al [4] proposed a customized genetic algorithm

to extract strategies for tic-tac-toe.

VIII. GENERAL DISCUSSIONS AND FUTURE RESEARCH

Our experiments have good results despite some non-

human-friendly extracted patterns, like Fanorona pattern5.

Nevertheless, some human learners might learn better from

these kind of patterns. Anyway, to quantify these perceptions,

we might need to do some experiments on human learners.

A this state, some patterns might need to be interpreted by

some advanced human players.

Moreover, patterns could be used as features in decision-tree

induction algorithms, such as ID3 [9] and J48 [11], which can

create logic based rules.

IX. CONCLUSION

Our main goal in this paper is to get any human-readable

knowledge from Fanorona endgame databases. Tic-tac-toe was

used as test-bench for our method. In this work, we had

an overview of the two games, followed by the results and

discussions.

We got some excellent results, that will be helpful. We

sometimes, had some drawbacks that we will overcome by

creating better structured patterns, and applying some other

algorithms.

The current work may open other directions for other games,

as other researchers in might be interested in doing similar

approaches.

ACKNOWLEDGEMENT

We give thanks to ISPM (Institut Supérieur Polytechnique

de Madagascar) for financially supporting our researches.

REFERENCES

[1] H. A. Raboanary, “Playing fanorona beyond perfect-play level using
persuasive dialogue,” in Proceedings of African Conference on Software
Engineering and Applied Computing. IEEE, ISBN 978-0-620-51684-6,
2011.

[2] L. V. Allis, “Searching for solutions in games and artificial intelligence,”
Ph.D. dissertation, University of Limburg, Maasricht, The Netherlands,
1994.

[3] J. Schaeffer, Y. Bjrnsson, N. Burch, A. Kishimoto, M. Mller, R. Lake,
P. Lu, and S. Sutphen, “Solving checkers,” in In Nineteenth International
Joint Conference on Artificial Intelligence (IJCAI-05, 2005, pp. 292–297.

[4] A. Bhatt, P. Varshney, and K. Deb, “In search of no-loss strategies for
the game of tic-tac-toe using a customized genetic algorithm.”

99

[5] M. P. D. Schadd, “Solving Fanorona,” Master’s thesis, Universiteit
Maastricht, Maastricht, The Netherlands, 2006.

[6] M. P. D. Schadd, M. H. M. Winands, J. W. H. M. Uiterwijk, H. van den
Herik, and M. H. J. Bergsma, “Best Play in Fanorona leads to Draw,”
New Mathematics and Natural Computation, vol. 4, no. 3, pp. 369–387,
2008.

[7] J. R. Koza, “Genetic programming,” 1997.
[8] K. Meffert and al, “Jgap - java genetic algorithms and genetic program-

ming package,” URL: http://jgap.sf.net.
[9] J. R. Quinlan, “Induction of decision trees,” Mach. Learn, pp. 81–106,

1986.
[10] D. W. Aha, “Tic-tac-toe endgame data set,” UCI Machine Learning

Repository - http://archive.ics.uci.edu, 1991.
[11] G. Breda, “Krk chess endgame database knowledge extraction and

compression,” 2006.

100

