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Segmentation Based Semi-Regular Remeshing of 3D Models 
Using Curvature Adapted Subdivision Surface Fitting 

 

Abstract 

This paper proposes a novel method of semi-regular remeshing for triangulated surfaces to achieve superior 
triangles lead to advanced visualization of 3D model. It is based on mesh segmentation and subdivision surface 
fitting which uses curvature adapted polygon patches. Our contribution lies in building a sophisticated system 
with three stages i.e. curvature-aware mesh segmentation, submesh surface fitting to generate a high quality 
semi-regular mesh and finally stitching the segments using an efficient algorithm. Our method uses centroidal 
Voronoi tessellation (CVT) and Lloyd’s relaxation to generate curvature adapted site centers. Geodesic distances 
from site centers are used for labeling segments and indexing corner vertices for each segment boundary. Using 
information of site centers and corner vertices, feature adapted polygonal patches is generated for each segment. 
These patches are then subdivided and optimized using squared distance metric to adjust position of the 
subdivision sampling with segment details and prevent oversampling. At last, an efficient stitching algorithm is 
introduced to connect regular submeshes together and build the final semi-regular mesh. We have demonstrated 
the results of our semi-regular remeshing algorithm on meshes with different topology and complexity and 
compared them with known methods. Superior triangle quality with higher aspect ratio together with acceptable 
distortion error is achieved according to the experimental results. 

Keywords: visualization of triangulated mesh, computer graphics, semi-regular remeshing, centroidal voronoi 
tessellation (CVT), mesh segmentation, subdivision surface fitting, stitching. 
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1. Introduction 

Efficient mesh triangulation of 3D models is an important issue in computer graphics which leads to fine 
visualization of the model. The models generated by 3D scanning tools are irregular meshes and contain many 
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redundant vertices. Irregular meshes are not suitable for mesh compression and lead to low transmission 
efficiency. Also, level of details and multi-resolution representation of 3D models requires semi-regular meshes 
and it is still an interested and active research area especially in mesh compression applications [1]. Semi-regular 
meshes mostly contain regular vertices. The valance of a regular vertex is 6 for interior vertices and 4 for 
boundary ones. Semi-regular remeshing algorithms keep the number of non-regular vertices small and constant 
[2, 3] without any loss of accuracy. It is achieved by higher sampling rate to compromise loss of accuracy. Since, 
mesh regularization techniques, especially subdivision-based ones, try to increase face quality without paying 
attention to redundant vertices they cause oversampling during regularization. The oversampling of the mesh is 
an important factor because it raises the number of vertices in low detail areas of the mesh and causes 
computational complexity for next processing steps. Also post-simplification of the regulated mesh is not an 
appropriate solution because it can affect mesh regularity and/or accuracy. To overcome the above mentioned 
problems, we propose a novel mesh regularization algorithm for which we derive a semi-regular mesh with 
reduced vertex redundancy. It is done by segmenting a mesh into high detail and low detail segments using 
curvature feature. Then, adaptive polygonal patches corresponding to each segment are generated as a control 
mesh.  Moreover, adaptively generated polygonal patches control vertex distribution in individual submeshes 
according to segment details. Then, subdivision surface fitting is applied to every curvature adapted polygonal 
patch and new regular submeshes are generated. At last, by stitching all the submeshes together, we build the 
final semi-regular mesh. Our proposed framework produces a high quality semi-regular mesh and at the same 
time reduces the number of redundant vertices.  

The first goal in high performance semi-regular remeshing is to generate high quality triangles with 
acceptable error range. In a triangular mesh, the highest quality belongs to the equilateral triangles and loss of 
quality is measured by deviation of triangles from equilateral form [4]. Distributions of aspect ratio for the 
higher quality triangles are closer to one in comparison to the lower quality triangles. We are interested in semi-
regular meshes with higher quality since they have lower costs for further processing such as storage 
compression, view dependent representation, multi-resolution analysis and shape editing [5]. Besides, narrow 
triangular meshes with low shape quality cause further application problems, such as poor finite element 
matrices, which can compromise the efficiency of convergence and accuracy of solution [6]. 

1.1. System Overview 

The main contribution to improve efficiency is that our new algorithm computes vertex-distribution of the 
semi-regular mesh based on details of the original 3D model. It is done by allocating curvature-dependent 
polygonal patches to its corresponding segments. By this way, vertex concentration is controlled in high and low 
detail areas. Subdivision surface fitting using squared distance metric is then adaptively applied through 
polygonal patches with respect to segmented sharp and smooth regions and regular submeshes are generated. 
Finally, in the post processing step, submeshes are stitched together. This method reduces vertex redundancy in 
the resulting semi-regular mesh for a given approximation error compared to other mesh regularization 
techniques. The major novelty of the work is to use curvature dependent polygon patches to distribute the 
vertices adaptively to preserve details of the model. It is achieved by combination of centroidal Voronoi 
tessellation and mesh segmentation with subdivision surface fitting to generate an adaptive semi-regular surface 
for the entire mesh. Block diagram of our proposed method is shown in Figure 1.  

In this paper, the key contributions are: (1) A segmentation algorithm to separate high and low curvature 
areas of the mesh using CVT and region labeling (section 2). (2) Building an adaptive polygonal patch for every 
segmented region and SDM-based subdivision surface fitting to build regular submeshes (section 3). (3) A 
stitching algorithm to combine submeshes together and construct final semi-regular mesh (section 4). Section 5 
shows the experimental results and section 6 is the conclusion and future works. Related works similar to our 
contributions are introduced as follows. 

1.2. Related Work 

Semi-regular remeshing received a considerable attention in recent years. It has ever increasing ranges of 
applications including progressive transmission, multi-resolution analysis and compression of 3D geometric 
models [7]. For instance, Sun et. al. used semi-regular lunar surface for view dependent progressive transmission 
and rendering [8]. Different methods to regularize meshes can be put in two major groups including mapping-
based (global) [9] and subdivision-based (local) techniques [10].  
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In mapping-based methods there is a one to one correspondence between original and remeshed triangles 
[11]. It is known as geometry image (GIM) and mapping distortion is the main challenge of these methods. 
Zhong et.al. used anisotropic surface meshing with conformal mapping [12]. Choi et al. proposed a robust quasi 
conformal surface remeshing which is adaptive to area distortion of parameterization [13]. In subdivision 
oriented techniques all the high and low detail regions of the mesh are uniformly sampled and regulated [14]. 
Kammoun et.al. generated optimized semi-regular meshes to improve performance of wavelet coder [1]. Lee et. 
al.  used displaced butterfly subdivision surfaces to remesh approximated point cloud [15]. The main challenges 
of these methods are over sampling in low detail areas and smoothing effect in sharp regions. Our research deals 
with the second group and aims to compensate the drawbacks of subdivision-based semi-regular remeshing 
techniques. In the following we explain the related work about the main blocks presented in this study. 

Mesh Segmentation: Different methods of mesh segmentation have been comprehensively summarized by 
Shamir [16]. Basically, the methods can be categorized as one of these groups including region growing [17], 
watershed methods [18], hierarchical clustering [19], feature points [20], skeleton-based segmentation [21] and 
feature sensitive segmentation [22].  

Our proposed segmentation algorithm uses mesh coarsening based on CVD (centroidal voronoi diagram). Then, 
mesh is segmented using geodesic distance labeling. CVD is one of the most common techniques for direct 
remeshing. A comprehensive study of remeshing techniques can be found in [23]. Many recent mesh 
regularization algorithms use Voronoi diagrams [5] and it is still an effective tool for surface remeshing [24]. 
Our method benefits from curvature adapted CVD sampling for mesh coarsening. It causes to generate feature 
adapted segments which will be used for adaptive surface fitting in the next step. 

Surface fitting: Optimized surface fitting can be categorized into three major groups including: point distance 
minimization (PDM) [25], tangent distance minimization (TDM) [24] and squared distance minimization (SDM) 
[27]. A complete analysis of optimization methods for subdivision surface fitting is presented in [28]. We have 
used SDM-based optimization method for its faster convergence and reliability with respect to other techniques. 
Our implemented algorithm is a modified version of [29] for best fitting to our segmented mesh. Curvature 
adapted polygonal patches after subdivision act as an initial control mesh for SDM-based surface fitting in this 
paper.   

Stitching: Two different applications of 3D stitching in the literature are: (1) mesh repair [30], (2) connecting 
segmented parts of a mesh together [31]. We have introduced a stitching algorithm to connect generated 
submeshes together and build the entire semi-regular mesh.  

2. Mesh Segmentation   

3D model segmentation in our proposed method has two steps including curvature-based CVD remeshing 
and distance-based region labeling. 

2.1. Curvature-dependent Voronoi diagram remeshing 

Voronoi diagrams (or Voronoi Tessellation) are important geometric data structures for remeshing. Let 
},,...,{ 21 nppp  be a set of points (so-called sites) in  dR . We associate to each site ip  its Voronoi region

)( ipV such that:  

)1(},:{)( ijpxpxRxpV ji
d

i   

The collection of the non-empty Voronoi regions and their faces, together with their incidence relations, 
constitutes a cell complex called Voronoi Diagram (VD) of    .  

A Centroidal Voronoi diagram (CVD) is a VD where each Voronoi site ip   is also mass centroid of its 
Voronoi region [32]: 
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where, )(x  is the density function and controls the size of the Voronoi regions. 

In CVDs energy is minimized by  
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Recent studies have introduced new investigation techniques using isotropic Voronoi diagrams [33, 34]. We 
make no assumption on the points ip , as centers of mass of their respecting region. This generalization is useful 

when considering non-planar meshes, where the best location of the ip  points is not the cluster centroids. It is 
achieved by choosing user defined density function in equation (2) for obtaining non-uniform feature-dependent 
coarsening of the entire mesh. We initialize our coarsening process with randomly distributed set of seed 
vertices. Then, we iterate the flooding energy minimization in equation (3) and seed repositioning until 
convergence is achieved. The seed repositioning step moves the seed of each site to the closest vertex to the 3D 
centroid of the site. 

For every vertex ݒ of the triangular mesh, we use the method of [35] to estimate the discrete Gaussian and 
mean curvatures denoted as )(vK  and )(vH  , respectively. Then, we define a hybrid curvature function as: 

)4()()()( vHvKvD   

)(vD is the sum of absolute values of Gaussian and mean curvatures. For every vertex position dRv  of 

the mesh, we define variable )(v  in equation (2) as: 

)5()()( vDv   

The map of curvature distribution of )(vD  on the mesh surface is shown in four different models in Figure 

2. The color of the top and bottom of color-bar is related to the highest and lowest values of )(vD , respectively. 

Color-bar is normalized according to )(vD  values in four models between 0 and 1. It is shown that high 
curvature areas are extracted by curvature function defined in equation (4). 

Energy minimization is done according to equation (3) by using Lloyd’s relaxation method [36] and our 
curvature-based density function in equation (5) to obtain a non-uniform feature-dependent segmentation. 
Segmentation reduces the required memory space in the following processing stages. Also, feature-based 
remeshing inversely relates segmented areas to mesh details. It means that regions with high curvature details 
will have smaller areas compared with low detail regions. Figure 3 shows the results of CVT and Lloyd 
relaxation for 60 randomly distributed sites on two dimensions with non-constant density function

   2 2( )
0

, , x y
z

v x y z e  


 , where origin is placed on the center of rectangle. Distribution of curvature-

based density function is high at the center of the rectangle and decreases when closes to the borders. Seeds are 
selected randomly.  After relaxation, more seeds are assigned to high curvature areas around center and less 
seeds are distributed near borders with low curvature. Here, our feature-based site centers are generated, but in 
this step we don’t use them for remeshing. Instead, they are used for labeling vertices in the original mesh as 
described in the next part. Moreover, they are considered as centers of polygonal patches. 

2.2. Geodesic-based region labeling 
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To have independent control over vertices inside each segment, we need to determine which group of 
connected vertices in the original mesh is related to which one of site centers. We create this relationship by 
using geodesic distance. In this work, we use the “fast marching on the triangulated domains” utilized in [37]. It 
computes approximate geodesic paths between two vertices in )log( nnO  time per path (n is the number of 

vertices in the mesh). We define each arbitrary vertex nkvk ,...,1,   of the original mesh has label index 

kviLabel )( if mipi ,...,2,1,    (m is the total number of CVD site centers) we have  

 ( ) arg min ( , ) (6)
kv geo i k

i
Label i d p v  

),( kigeo vpd is geodesic distance between points ip  and kv , computed by fast marching algorithm and ip  
is the coordinate of a CVD site center which has the minimum geodesic distance from vertex. 

2.3. Corner detection and striping segment borders 

Output of the previous stage generates m groups of labeled vertices, in which, m is the total number of  user 
defined CVD site centers and at the same time equals to the number of segments. According to geodesic distance 
metric in equation (6), each group of vertices belongs to a segment in an isolated island. We define three types of 
faces generated from labeling procedure as follows: 

Type I face: A face that all of its three vertices are only members of one segment (interior-face) 

Type II face: A face that has vertices belongs to exactly two different segments (strip-face) 

Type III face: A face that all its three vertices belong to more than two different segments (corner-face) 

By the above definition, corner faces are generated and the gap between two segments creates strips. Each 
strip is a collection of strip faces which starts from a corner face and ends to another corner face.  

Now, we are ready to define two types of boundary vertices for every segment according to the above 
mentioned type III face. The first one is the “corner vertex". We call all three vertices of every corner-face as 
“corner-vertex". Each corner-vertex is in common with one corner-face.  The second one is the "strip-vertex". It 
is a vertex placed on the segment boundary but is not “corner-vertex”. We have used the term “corner-vertex“ 
because it contains the most valuable information about the connectivity of each segment with its neighbors. 
Using the above mentioned definition of face types with label information of equation (6), we identify the type 
of every vertex. Also three types of faces on the labeled mesh are determined. Figure 4 shows the results of 
vertex and face type definition applied for Nefertiti model with four regions. 

3. Surface fitting 

In this section previously found corner vertices for each segmented region together with its site center are 
used to generate a polygonal patch. The sizes of these patches are adapted to segment details according to 
curvature based segmentation procedure described in section 2.  These polygonal patches are used as building 
blocks to generate control meshes used for optimized SDM-based surface fitting in the next step. After surface 
fitting a regular submesh is generated for every segment in which distribution of vertices are trimmed to be 
adapted to segment details. It is because of feature-dependent patches have been defined for every segment. The 
detailed description is as follows:  

3.1 polygonal patch conversion   

In this section we introduce an algorithm to generate a polygonal patch for every segmented region in the 
original mesh. In section 2, a set of segments containing site center, labeled boundaries and corner vertices were 
generated. Our goal is to build a triangulated polygonal patch which will be subdivided later to build the control 
mesh in the next surface fitting step. In the proposed method a polygonal patch is generated by connecting 
succeeding neighbor corner vertices in one segment to create boundary edges. Then site center is connected to 
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every corner vertex to complete polygonal patch conversion. The number of created corners in every patch 
depends on the number of pre-defined segments and geometric properties of the model and there is always at 
least three corner vertices. Also, patch center inside the polygon is the same as the position of site center. In 
order to maximize polygon regularity, we need to generate a hexagonal patch when the number of corner 
vertices is less than six. Corner adding algorithm is introduced in this step to achieve this task (see Figure 5).  

To add corner vertices, a prioritizing procedure is defined here for boundary vertices of the segment. To 
generate non-planar hexagonal patch that best fits segment details, additional corner vertices must be selected 
from the segment boundary. Between every two neighboring corner vertices, there is a number of boundary 
vertices which are counted and indexed from 1 to k. Corner adding algorithm selects median index of k boundary 
vertices as the candidate vertex between two succeeding corners. It means that if k is odd, index is (k+1)/2 and if 
k is even, candidate vertex index is (k/2)+1. After determining candidate vertices, selection is done among them 
to add them to corner vertices. First selected candidate vertex has the maximum k and the next selection has the 
second maximum k and so on. The algorithm stops to add candidate corner vertex when the sum of corner 
vertices plus selected candidate vertices to be equal to six. The implementation result of the algorithm is shown 
in Figure 6.  

3.2. SDM-based Subdivision  

The basic idea of subdivision surface fitting is to construct a smooth model using iterative subdivisions of a 
coarse control mesh. Through different global methods of surface fitting, effectiveness of squared distance 
metric (SDM) is proved in [28]. Unfortunately, in global subdivision, the number of triangles increases 
exponentially at every subdivision level. For example in the regular loop scheme, the number of triangles is 
multiplied by 4 after one subdivision. Moreover, subdivision of the entire model creates oversampling in low 
detail areas of the mesh. We have used Loop subdivision for local surface fitting of submeshes. Independent 
subdivision of every sub segment instead of the whole mesh is faster and also reduces smoothing effect of 
subdivision and prevents oversampling in low detail areas of the mesh.  

3.2.1. Algorithm flow 

We have used modified version of subdivision surface fitting using SDM method in [29] for every segment 
without local refinement. Since, our method is intrinsically local by feature-aware segmentation and polygonal 
patch conversion there is no need to local refinement. Our proposed local subdivision surface fitting has the 
following main steps: 

1. Normalization of the target segment by scaling all data points in the cube 3]1,0[  .  
2. Pre-computation of distance and curvature at all vertices of the original target segment.  
3. Generate control mesh by Loop subdivision of the polygonal patch in section 3.1. 
4. Calculate subdivision limit surface positions of the control mesh in step 3. 
5. On the original target segment, find closest data point for every limit surface position in step 4 and 

generate linear combination of control points in step 3.   
6. Adjust control points in step 3 by solving equation generated in step 5.  
7. Compute error criteria, if acceptable go to step 8, otherwise go to step 4 with updated control mesh. 
8. Get the subdivision surface from optimally updated control mesh and generate optimized submesh.  

The results of implementation algorithm for one level of Loop subdivision is illustrated in Figure 7.  

4. Stitching 

After surface fitting for individual submeshes, we need to merge them together and build the entire semi-
regular model. In this section we propose a new method for stitching optimized submesh boundaries to complete 
their connection with border triangles in neighboring submesh strips. During segmentation, all the vertices of the 
original mesh are included inside segments and only striped-connected faces are removed as shown in Figure (8-
a). For this reason proposed stitching algorithm recovers only new faces in new strips using neighborhood 
indexing and corner information of the original mesh. It is done by creating duality between segment border 
information in the original mesh in Figure (8-a) and the optimized submesh in Figure (8-b) using SDM-based 
metric. Figure (8-c, 8-d) shows stitching steps for the entire mesh. For better illustration of the process, our 
stitching algorithm is implemented on a coarse mesh.  Figure 8-a is the original labeled mesh with detected 



 

7 
 

corner and border vertices. Red and black circles in Figure 8-b are dual corresponding corner and border vertices 
in Figure 8-a, respectively. For every corner vertex in the original segment, one and only one dual corner is 
defined in the optimized submesh. A dual corner on the optimized submesh is a boundary vertex on the submesh 
which has the minimum Euclidean distance from its corresponding dual corner vertex in the original segment. A 
sample strip is coded as S1S2S3S4 and is shown in Figure 8-c. After stitching all the coded strips of the mesh, 
oriented corner faces are created by three triangles which are illustrated with red circles on their vertices in 
Figure 8-d. 

4.1. Stitching algorithm flow 

After submesh optimization, corner and neighborhood information which is extracted in section 2.3, is 
transferred to optimized submesh using Euclidean distance metric. We indicate every corner vertex i  in 
submesh k , with Segment(k).Corner(i),  k=1 ,…, n_seg  and i=1, …,n_corner  where n_seg is the total number 
of segments and n_corner is the total number of corners in Segment(k). Also, we define a structure for corners as 
follows (see Table 1): 

 coord  : is vertex coordinate of  ith  corner in the kth  segment. 
 neighbor_ind : is the index of neighborhood segments connected to ith  corner in the kth segment. 
 neighbor_coord: is the neighborhood vertex coordinates of ith corner in the kth  segment. 
 Segment(k): is the kth  segment in the original model. 
 Segment_opt(k): is the kth  submesh in the optimized model. 
 Corner(i) : is a structure relating three fields to its connected kth  segment. 
 Segment_opt(k).Border(j) : is the coordinate of the jth   boundary vertex of the kth  submesh in the 

optimized model where  j=1, …, n_border and n_border is the total number of border vertices of the   
kth  submesh. 

With the above notation, our proposed stitching steps are: 

Step 1: For every corner vertex in segment k, find minimum distance of border vertices in the optimized 
submesh and mark it as the corner vertex in the optimized submesh: 

 
_ ( ). ( ).

min ( _ ( ). ( ). , ( ). ( ). ) (8)j

Segment opt k Corner i coord
dist Segment opt k Border j coord Segment k Corner i coord


 

Where dist(A,B) is the Euclidean distance between points A  and B. These detected corners are illustrated 
with black and red circles in Figure (8-b).  

Step 2: By tracing on the border of every submesh k, for every two succeeding corners on the submesh as 
shown with S1S2 in Figure (8-c) find their corresponding corners S3S4 on the neighbor submesh. 

Step 3: In the created oriented strip S1S2S3S4 find the length of L1=S1S2 and L2=S3S4 (for example L1=6 
vertices and L2=5 vertices as shown in Figure 8-c), then calculate: 

1 2

1 2

max( , ) (9)
min( , )

L LQ floor
L L

 
  

 
 

1 2

1 2

max( , )remainder (10)
min( , )

L LR
L L

 
  

 
 

Where, )(
B
Afloor   and remainder( )A

B
are integer part and remainder of 

B
A

division result, respectively. 
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Step 4: Assuming 2 1L L , start from S4 and create Q triangles whose heads are common with S4 and their 
bases are connected to Q succeeding edges starting from S1. We call these triangles, “direct faces”. Then move to 
the next vertex neighbor to the S4 and create the same “direct faces” for that vertex till finishing in the last 
vertex, S3. Here, “direct faces” have been created. Then build single triangular holes available between “direct 
faces”, and we call them “between faces”. Finally, create R  triangles which have common head with S3 and also 
have R  neighbor bases starting from last “direct face” and ending in S2.We call them, “remained faces”. In case 
of 1 2L L , do the same procedure by replacing the role of L1 with L2.  

Step 5: repeat step 4, in all the strips of the entire mesh. 

Step 6: create corner faces as shown in Figure (9-d) with three red vertices. 

Step 7: merge created faces of the strips with corner faces and submeshes together 

All the process is illustrated in Figure 9. 

5. Results 

In this section, we present experimental results of our semi-regular remeshing framework to demonstrate the 
quality improvement and efficiency of the proposed method. All the experiments were achieved on a Notebook 
with 2.1 GHz Intel Core 2 Duo and 4GB of RAM. Algorithms have been implemented in MATLAB 
programming language installed in windows 7 operating system. 

Many models have been tested that a number of them are demonstrated. We calculate performance of our 
semi-regular remeshing algorithm with two parameters including the number of Voronoi regions (segments), the 
number of iterations used for Lloyd’s relaxation. The number of iterations used for Lloyd’s relaxation is selected 
to be equal to 15.  Since, we aim to generate a high quality semi-regular mesh with reduced number of vertices; 
only one level of subdivision is used for every segment to check the mesh regularity for all the models. In regular 
Loop scheme, the number of faces in the mesh is multiplied by 4 after every subdivision. The number of vertices 
in the semi-regular mesh is selected from 10 to 70 percent of vertices in the original model used in Table 2. It is 
controlled by selecting user defined number of site centers. The tolerance on vertex number depends on the 
resolution of the original mesh. There is another motivation to generate simpler meshes, too. It is because small 
meshes have lower triangle quality than larger ones. In practice, regularity gets worse during simplification. 
Experiments show that our method preserves regularity better than the other remeshing techniques even in the 
coarsened meshes. 

Quality measurement of triangular mesh is traditionally achieved by measuring the geometric properties of 
the resulting triangles. We use the criteria in [4] to measure the semi-regular remeshing quality (see Table 2). 
The quality of triangle t is measured by t

t
t

RQ
h

   where Rt  is the in-radius of  t, ht  the longest edge length of  t 

and α is the normalizing coefficient equal to 6
3

.  Qmin is the quality of a triangle and Qavg  is the average triangle 

quality. Qmin  and  Qavg  can be applied for the whole triangles of a 3D model. θmin is the smallest angle of the 
minimal angles of all triangles and θmin,avg  is the average of the minimal angles of all triangles. Obviously, θmin  
is between 00 and 600, anywhere . For a high quality mesh, the minimum of these values should not be less than 
450 according to [38]. θ < 300  is the percentage of triangles with its minimal angle smaller than 300. The error d 
is the Hausdorff distance between the original model and the remeshed model with respect to the bounding box 
diagonal [40]. 

In the experiments, our proposed method is tested for various models with different geometric properties. 
Comparison of our coarsened mesh with CVT-based vertex clustering [38] and QEM (Quadric Error Metrics) 
simplification [39] is shown quantitatively in Table 2. Also, results are illustrated qualitatively in Figure 10. 

For precise investigation of generated semi-regular mesh, distribution of quality histogram for Table 2 is 
calculated. Visual results of semi-regular remeshing for CAD models (turbine and rocker-arm) and graphical 
models (dino and egea) are illustrated by triangle quality aspect ratio histogram in Figure 10 and results are 
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compared with respect to other remeshing techniques in [38] and [39]. Regarding mesh quality with respect to 
average aspect ratio and average minimum triangle degree, compared with [38] and [39], our method shows 
better quality performance for all the models. Also, in Egea model about the same distortion error occurs 
compared with [38] and [39]. But in Dino, Rocker-arm and Turbine models we have increased distortion with 
better performance quality. Increased distortion error appears in the models with large curvature diversity in 
small areas, especially in CAD models. It is the reason that adapting curvature in remeshing of CAD surfaces is 
still a challenging problem [41]. Also, it should be noted that mesh coarsening automatically reduces mesh 
quality but histogram distribution in all the models of Figures 10 shows quality improvement regarding to aspect 
ratio distribution in the simplified meshes. In fact, distribution of aspect ratio for surface with higher quality 
triangles is closer to one in comparison to the surface with lower quality triangles. Numerical Examples in Table 
2 show improvements in quality measure (increase of Qmin and Qavg and decrease of o30 percentage) with 
respect to [38] and [39]. 

We should compromise between triangle quality and Hausdorff error especially in high rate mesh coarsening. 
Mesh coarsening techniques mentioned in [38] and [39] are not subdivision oriented and do not generate semi-
regular meshes. To illustrate performance of the proposed semi-regular remeshing more clearly, we compare our 
method with a related semi-regular remeshing algorithm called displaced subdivision surface in Ref [42]. 
Comparison results is listed in Table 2 and visually illustrated in Fig.11. Results show that our method not only 
preserves sharp features with greater high quality triangles but also has lower distortion error in graphical models 
of bunny, horse and dragon models in comparison to the method of [42] which is also a subdivision based 
method and generate semi-regular mesh. Our algorithm can produce semi-regular meshes adapted to the local 
curvature of the model through the proposed remeshing framework. 

6. Conclusion 

We have presented an effective framework to generate semi-regular meshes. Our semi-regular remeshing 
algorithm is based on segmentation of an input mesh with a curvature adapted CVT function. This algorithm 
depends on the concepts of segmentation, subdivision surface fitting and stitching. We stitch the global property 
in curvature-based density function of CVT with local subdivision to generate feature-adapted semi-regular 
meshes. Iterative process of optimized surface fitting leads to high quality semi-regular meshes with the same 
topology as the original ones. Future work will aim at remeshing models having small holes with respect to 
segment dimensions. As a post processing step, designing other feature dependant criteria during submesh 
optimization process will be considered to increase accuracy for coarsened CAD models.   
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