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Abstract: Firefly algorithm (FA) is a new meta-heuristic optimisation algorithm that mimics the social behaviour of fireflies flying
in the tropical and temperate summer sky. In this study, a novel application of FA is presented as it is applied to solve tracking
problem. A general optimisation-based tracking architecture is proposed and the parameters’ sensitivity and adjustment of the FA
in tracking system are studied. Experimental results show that the FA-based tracker can robustly track an arbitrary target in various
challenging conditions. The authors compare the speed and accuracy of the FA with three typical tracking algorithms including
the particle filter, meanshift and particle swarm optimisation. Comparative results show that the FA-based tracker outperforms the

other three trackers.

1 Introduction

Object tracking has drawn a great deal of attention in recent
years. The reason is that object tracking has found its way
into many real-world applications, for example, surveillance
[1, 2], vision-based control [3, 4] and robotics [5, 6].
However, object tracking in video sequences is still a
challenging task because of the large amount of data used
and the common requirement for real-time computation.
Moreover, most of the models encountered in visual
tracking are non-linear, non-Gaussian, multi-modal or any
combination of these.

To solve the problems encountered in the tracking process,
researchers have performed visual tracking using a variety
of methods and algorithms which can be generally divided
into two categories: probabilistic methods and deterministic
methods [7]. Probabilistic methods view the tracking
algorithm as a state solving problem under the Bayesian
framework, modelling uncertainty and propagating the
conditional densities through the tracking process.
Representative methods are Kalman filter [8] and particle
filter (PF) [9]. Deterministic methods localise the tracked
object in each frame by iteratively searching for a region
which maximises the similarity measure between this region
and the target window. These methods are computationally
efficient but may converge to local maximum and are
sensitive to background distractors, clusters, occlusions and
quick moving objects. Meanshift is the representative one [10].

Essentially speaking, meanshift is a gradient-based
optimisation algorithm and it has been used successfully in
visual tracking. This inspired more and more researchers to
investigate other optimisation alogrithms using different
strategies to solve tracking problems. Typical methods are
particle swarm optimisation (PSO) algorithm [11-13] and
genetic algorithm (GA) [14]. Meanwhile, in recent years,
another novel optimisation algorithm named harmony search
has been proposed and analysed in visual tracking [15, 16].

IET Comput. Vis., 2013, Vol. 7, Iss. 4, pp. 227-237
doi: 10.1049/iet-cvi.2012.0207

These contributions, as related to the scope of our research,
are discussed below. The PSO algorithm was successfully
applied to visual tracking by Zhang et al. [11]. In their
work, the parameters that control the movement of the
particles in the swarm were updated dynamically depending
on the fitness values of the particles. Experimental results
showed that the PSO-based tracker was more robust and
effective than the state-of-the-art PF and unscented PF-based
tracking systems especially in fast and erratic motion
situation. Subsequently, Zhang et al [12] proposed an
annealed PSO-based particle filter algorithm for articulated
three-dimensional (3D) human body tracking. Experiments
with multi-camera walking sequences showed that their
tracker was robust to noise and body self-occlusion and
could alleviate the problem of inconsistency between the
image likelihood and the true model. Recently, John et al.
[13] proposed a hierarchical PSO (HPSO) algorithm to solve
the markerless full-body articulated human motion tracking
from multi-view video sequences. Their results showed that
the HPSO performed well in sequences with sudden and fast
motion and the accuracy and consistency were better than PF
and annealed PF.

A visual system using GA was proposed by Minami et al.
[14]. In their work, a fish was tracking and GA was used to
optimise a function that minimises the difference between a
previously defined fish template and the image captured by
the camera. Experiments indicated that their system performed
well in recognising and robustly tracking a fish target in
real-time using limited amounts of computational resources.

Recently, Fourie et al. [15] designed a visual tracking
system based on the improved harmony search (IHS)
algorithm. In their work, the target was modelled as a
colour histogram and the best estimated target location was
obtained by using the Bhattacharyya coefficient as a fitness
metric. Experimental results showed that IHS was able to
track poorly modelled targets in real time. Gao ef al. [16]
carried on a further study on harmony search (HS)-based
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tracking system. In their work, the performance of four
prominent improved variations of HS, namely IHS,
global-best HS, self-adaptive HS, differential HS were
tested and analysed comparatively on multiple challenging
video sequences.

Overall, with the rapid development of modern
optimisation algorithms, more and more researchers started
to investigate optimisation algorithms to perform visual
tracking. The advantage of these methods is that no
assumptions are made about the shape of the distribution or
the noise in the system. Therefore it enables these methods
a potential method for accurate solutions even in
challenging ambiguous environments.

Lately, a new biologically inspired algorithm, namely firefly
algorithm (FA), was proposed by Yang [17]. FA algorithm
is based on the idealised behaviour of the flashing
characteristics of fireflies. Preliminary studies indicated that
FA was superior over GA and PSO [17]. Since the
emergence of this algorithm, it has been successfully applied
to various optimisation problems, for example, economic
dispatch, structural optimisation, image compression etc.
[18-22]. In this paper, FA is applied to solve the object
tracking problem. To demonstrate the tracking ability of
FA-based tracker, the tracking performances of FA, PF,
meanshift and PSO are studied comparatively.

The rest of the paper is organised as follows: In Section 2,
the relationship between the optimisation and tracking
is discussed and a general optimisation-based tracking
architecture is designed. In Section 3, the basic concepts and
procedure of FA are discussed. In Section 4, the parameters’
sensitivity and adjustment of FA in the tracking system are
analysed. In Section 5, the tracking performance of FA is
compared with that of PF, meanshift and PSO and their
results are analysed. In Section 6, we conclude the paper and
identify future research directions that stem from this study.

2 Optimisation and tracking

2.1 Relationship between optimisation and
tracking

Optimisation is the process of selecting the best element from
some sets of available alternatives under certain constraints
[23, 24]. Optimisation techniques are used on a daily basis
for industrial planning, resource allocation, econometrics
problems, scheduling, decision making, engineering and
computer science applications [23]. Research in the
optimisation field is very active and new optimisation
methods are being developed regularly [25, 26].

Mathematically speaking, all optimisation problems with
explicit objectives can be expressed as non-linearly
constrained optimisation problems in the following generic
form

maximise/minimise f(x), x &€ R" (1)
where fis considered as an objective function or cost function.
R" is the search space. The vector x is often called a decision
vector which varies in a n-dimension space R".

Essentially speaking, tracking object in video sequences, or
the problem of locating the target in each frame can be
interpreted as an optimisation problem. The observation
distance between the target and candidate forms the
similarity function (fitness function). Locating the target can
be interpreted as minimising or maximising the similarity
function in the candidate solution. In this regard, visual
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tracking, as an optimisation problem, can be achieved using
optimisation techniques.

2.2 Optimisation-based tracking system

To compare the tracking performance of optimization-based
trackers, we had designed a general optimisation-based
tracking architecture to which other optimisers could also
be applied [16]. The architecture is illustrated in Fig. 1.

As described in Fig. 1, the process starts with a target chosen
by the user marked in a rectangle or ellipse. Then, the state
vector is initialised. The state vector in our work is defined
as x=[x, y, s], where x, y is the target’s location in pixel
coordinates and s denotes the scale parameter that controls
the size of the object. Then, once the target is chosen in the
first frame the state vector is initialised as xy = [xo, yo, 1.0],
where xq, yo is the target’s initial position and s=1.0
indicates there is no scale change in the initial frame.

Once a target is selected and the state vector is initialised,
new candidates’ state vectors are generated by a dynamic
model. Considering that the object moves very little
between frames, the random walk model is applied. Note:
we can also initialise the vector using a motion model that
assumes constant velocity or constant acceleration and in
this case the state vector is a 5D problem. In our work, we
choose a simple motion model to compare the novel
method with the PF, meanshift and PSO.

An observation model is established to describe the
correlation between the appearance and the state of the
object. In our work, the spatial color histogram is adopted
[10]. A similarity (fitness) function is formed to measure
the observation distance between the target and candidate.
Typically, the Bhattacharyya coefficient is used to measure
the similarity between two histograms [10, 15]. It is defined as

N

B(hy, hy) =Y /(i) 2)

i=1

where N is the number of bins in the histograms and /; and 4,
are the histograms being compared. It is noted that B(%,, h,) is
large when the histograms are similar while small when they
are very different.

The dash box in the architecture denotes the optimisation
process. This is the core part in the optimisation-based
tracking algorithm. In this part, an optimiser is adopted to

Image Choose the target and establish Acquire the candidates in the next
stream the initial state vector. frame based on the motion model.
T :
based on the observation model.

1

Obtain the similarity function by
calculating the observations distance
between the target and the candidates. )

Minimise or maximise the similarity

the optimisation.

)
Select the best candidate and return the
corresponding location.

play the frame
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the target.

1
]
: function in the candidate solution using
I
1
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1

Fig. 1 Architecture of optimisation-based tracking algorithm
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select the candidate solution. This process can be carried out
by minimising or maximising the similarity function. Every
time the optimiser is queried for the target location, the
frame is displayed to indicate the location of the target. The
whole loop continues until no more frame is available.

3 Firefly algorithm

The FA was developed by Yang [17]. It mimics the social
behaviour of fireflies flying in the tropical and temperate
summer sky. Fireflies communicate, search for pray and
find mates using bioluminescence with varied flashing
patterns. FA is based on the following idealised behaviour
of the flashing characteristics of fireflies:

1. All fireflies are unisex so that one firefly will be attracted to
other fireflies regardless of their sex.

2. Attractiveness is proportional to their brightness, thus for
any two flashing fireflies, the less brighter one will move
towards the brighter one. The attractiveness is proportional
to the brightness and they both decrease as their distance
increases. If there is no brighter one than a particular firefly,
it will move randomly.

3. The brightness of a firefly is affected or determined by the
landscape of the objective function.

The basic steps of the FA are summarised by the pseudo
code shown in Fig. 2 [17, 19].

The brightness / of a firefly at a particular location x is
determined by the objective function I(x)f(x). The
attractiveness S is relative and it should be seen in the eyes
of the beholder or judged by the other fireflies. Therefore it
will vary with the distance r;; between firefly i and firefly j by

B(ry) = Boe™ G)

www.ietdl.org

As it is often faster to calculate 1/(1 + %) than an exponential
function, the above function can conveniently be replaced by

B(ry) = Bo/ (14 73) )

where f, is the attractiveness at =0 and in our work fy=1.
The parameter y characterises the variation of the
attractiveness, and its value is crucially important in
determining the speed of the convergence and how the FA
algorithm behaves.

The distance between any two fireflies i and j at x; and x;
can be the Cartesian distance

d

2
ry =l =l = |3 (v =) (5)

k=1

where x;_ is the kth component of the spatial coordinate x; of
the ith firefly.

The movement of a firefly 7 which is attracted to another
more attractive firefly j is determined by

2 1
x; =x;+ Bye Vi (xj — xi) + asS; (rand — 5) ©6)

where the second term is because of the attraction while
the third term is randomisation with o €[0, 1]. Without
alpha term, the system will start evolve from initial
configurations, but in a deterministic manner. On the
contrary, with the alpha term, the agents in FA explore the
search space locally, aided by randomisation which
increases the diversity of the solutions. Thus, there is a fine
balance between local intensive exploitation and global
exploration. Si(k=1, 2,..., d) are the scaling parameters in
the d dimensions which are determined by the actual scopes

Firefly Algorithm

Objective function f(X)

T
X = (X1, X2, ..., Xg)

Generate initial population of fireflies x(i = 1,2,...n)

Light intensity I; at x; is determined by f(X;)
Define light absorption coefficient ~
while( < MaxGeneration)
for i =1:n all n fireflies
for j = 1:i all n fireflies
if (/;<1)

Move firefly i towards j in d-dimension

Attractiveness varies with distance r via exp[-vr]

Evaluate new solutions and update light intensity

end if
end for j
end for {
Rank the fireflies and find the current best
End while

Postprocess results and visualization

Fig. 2 Pseudo code of FA
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of the problem of interest [17]. rand is a random number
generator uniformly distributed in [0, 1].

In this paper, the scaling factors (velocity noise variance
and the scale noise variance) are empirical and they should
be chosen based on the size of the video frame and the
expected movement of the target [27].

For example, consider surveillance footage from a security
camera. Let the video capture frames of 500 = 500 pixels and
the primary targets for tracking be people walking by the
camera. If the frame rates 30 frames per second and the
area in the frame represents 5m of a corridor, we can
calculate the number of pixels that a target is expected to
move based on the average walking speed of people. The
average walking speed of adults is considered as 80 m/min.
If each video frame represents 1/30th of a second we
therefore expect a human target to move 44.4 mm in each
frame. If 500 pixels represent 5 m of corridor each pixel of
the frame then represents 10 mm. Therefore even if a target
was moving at twice the average speed we would not
expect it to move more than 10 pixels (8.8 pixels) per
frame. For this application a reasonable choice for the
velocity noise variance is therefore 20 (Note: this is because
there is a coefficient (rand-0.5) as shown in (6)).

The scale noise variance is a litter more difficult to
calculate and it is usually determined empirically. In our
experiments, a reasonable assumption was that a target
would never grow by more than 10% between frames so
the scale noise variance was set as 0.2.

Therefore, in our work, the scales of the vector x, y and s
are chosen as 20, 20 and 0.2, respectively.

4 Parameters’ sensitivity and adjustment

It is worth mentioning that parameter tuning often seems a
self-contradicting problem in optimisation algorithms. The
speed and accuracy should be considered simultaneously
during the parameter tuning. In FA, we used various
population sizes from 10 to 50 and found that it’s sufficient to
use 15-20 population sizes for most tracking problems.
Therefore we have used the fixed population size of n=20 in
all our experiments. Like in [15], the optimisation process
was terminated by using three termination conditions as follows:

1. The fitness of the worst solution (fyorst) 1S good enough.
2. The best solution (fyes) is good enough and the Euclidean
distance between the best and the lowest solution (d) is below
a certain threshold.

3. Maximum number of iterations (MaxGeneration) reached
the algorithm terminates. MaxGeneration is set as 500 in
our work.

It is worth mentioning that the values used in the first two
criteria are highly dependent on the objective function and in
this case is the Bhattacharyya coefficient as mentioned in
[10]. Before determining these parameters, we have done a
lot of researches on the Bhattacharyya coefficient in visual
tracking. Experiments showed a general trend that an area
with Bhattacharyya coefficient being higher than 0.6 can
mainly represent the target. Therefore, to be on the safe
side, in the first termination condition, the value of fior 1S
set as 0.6 to guarantee that all the potential solutions are
near the true target. To guarantee all candidates close
together with best candidate near the target, we set fyes as
0.8 and the distance d as 5.
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Subsequently, we focus on the absorption coefficient y and
the randomisation parameter o and find the optimal value of
these parameters that will give us the most accurate estimate
in the least amount of generations. We are also interested in
the sensitivity to change of each of these parameters. This
will give us an indication of the robustness of the algorithm
and an indication of how much time has to be spent in
fine-tuning the parameters.

We tested the algorithm’s performance using a series of
different parameter values on a challenging tracking
problem involving a panda moving erratically along an area
with various challenges. The video is recorded using a
low-cost web cam and the quality of images is poor.
Moreover, the panda is often occluded by the trees and the
appearances of the panda change frequently. All those
challenging factors will provide ample local distractors that
can cause the tracker to lose its target. A video frame from
this example is shown in Fig. 3.

We started our analysis with the parameter y and divided its
ranging (0, 1) into 20 equal parts, with each a spacing of 0.05.
During the testing process, the tracking accuracy was
considered in the first place and the speed (number of
iterations) was considered in the next place. From the
experiment results, we noted that when y=0.05 and y=0.1,
the tracker performed equally well, and there was no
amount of optimisation saved the tracker from losing the
target at certain points in the sequence. In contrast, when
y>0.1, the performance declined evidently. Generally,
from the 575th frame, the target was lost and could not
be re-acquired in the following frames. One example
illustrating this statement is shown in Fig. 4.

In order to determine the final optimal value y, we further
divided it’s ranging (0, 0.1) into 20 equal parts (with each a
spacing of 0.005) and concentrated on the speed. Fig. 5
shows a graph comparing the speed of 20 different
implementations corresponding to 20 different values of the
y. The values in this graph were gathered by running the
algorithm once for each frame in the sequence and
calculating the average over all frames.

It can be seen from Fig. 5 that the best choice of y for this
example is y=0.06.

Next, the randomisation parameter o was investigated and
its value was varied from 0.1 to 1, with each a spacing of 0.05.
Likewise, our first concern is the tracking accuracy, and then

Fig. 3 Challenging tracking problem used for parameter
sensitivity and adjustment
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Fig. 4 Example showing the lost target when y > 0.1
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Fig. 5 Performance comparison using different values of y

the speed. Experiment results showed that the tracker
performed well when 0 <a <0.2. Then, we further divided
it’s ranging [0, 0.2] into 20 equal parts (with each a spacing
of 0.01) and concentrated on the speed. Fig. 6 shows the
performance comparison using different values of o.

It can be seen from Fig. 6 that when 0.05 <a <0.2, the
convergence rate is equally fast. In our work, o is set as
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Fig. 6 Performance comparison using different values of a

0.16. So far, the main parameters of FA are determined and
all these parameters remain fixed in the following
experiments.

5 Experiments and discussions

To demonstrate the ability of FA in visual tracking, we
compared our method with three representative tracking
methods including PF with 300 particles (PF_300) and 500
particles (PF_500) [9] (probabilistic method), meanshift
[10] (deterministic method) and PSO [11] (optimization-
based method).

To carry on the comparison, we collected four challenging
videos recorded indoors and outdoors. These video sequences
contain various objects in challenging conditions including
appearance changes, rapid and irregular motions, large scale
changes, similar object interferences, poor image qualities
and partial or full occlusions. A few snapshots from the
video clips are shown in Fig. 7 [(a) is download from:
http:/www.vision.ucsd.edu/project/tracking-online-multiple-
instance-learning, (b) and (c) are provided by Jaco Fourie and
(d) comes from CAVIAR: http:/www.groups.inf.ed.ac.uk/
vision/CAVIAR/CAVIARDATALI].

To make the comparison fair, the same target model and
motion model were used in the implementations. For the
FA, we used the parameter values found by the sensitivity
analysis of Section 4.

Fig. 7 Four challenging tracking examples

a Panda

b Person outside
¢ Basketball

d Kitbag
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In the PSO alogrithm, the particle updates its velocity and
state using the following equations in the nth iteration [11]

bl — X(Vi’n + o1 (Pi —x" n) + @2#‘«2(8 —x n))

i, n+1 — xl,n +Vl’ n+1

v

™)

X

where @1, ¢, are the acceleration constants, u,, u, € (0, 1) are
uniformly distributed random numbers and y is a constriction
factor which confines the velocity within a reasonable range:
||Vl, n” < vmax.

To make the comparison fair, in PSO algorithm, we used
the same population size (N=20), the same number of max
iterations (MaxGeneration = 500), and the same termination
conditions as those used in FA. The acceleration constants
@1, @, are set adaptively as follows [11]

o =21 ()/(f (1) +/(2)

: ®)
@, =21()/(f(P) +/(2)

where f(p') and f(g) are the fitness values of the individual
best and global best, respectively.

b
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Fig. 8 Tracking accuracy comparisons of different trackers in
‘Panda’ sequence

Fig. 9 Examples illustrating the differences of accuracy in ‘Panda’ sequence

a PF

b Meanshift
¢ PSO

d FA
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The constriction factor y is set to

_ e
X_{l, else

if o >

©)

where

max

Ve = 1.2 (gtfl - ngz)

Our first example, named ‘Panda’ sequence, is the same one
used for the parameters’ sensitivity analysis in the previous
section. It includes the tracking challenges associated with
appearance changes, rapid and irregular motions, similar
object interferences, poor image qualities and partial or full
occlusions.

In order to test the trackers’ accuracy, the video was
manually labelled by identifying the centre of the tracked
object in each frame visually. Then, the Euclidean distance
between the true centre and the centre estimated by the
trackers was calculated and used as an accuracy metric.
Comparative results are shown in Fig. 8.

It can be seen from Fig. § that the four trackers perform
equally well in the beginning (the first 135 frames).
However, when the target suffered from rapidly appearance
changes (from the 136th frame), the PF (both with 300 and
500 particles) loses the target and cannot recover the target
in the following frames. This is likely due to the fact that
the local distractors pull the particle clouds away from the
target. When the target suffered from serious appearance
changes and similar object interferences (570th frame), the
meanshift-based tracker begins to lose the target and never
obtains the opportunity to recover it properly in the
following frames. Unlike the PF and meanshift, the two
optimization-based trackers, PSO and FA, can robustly
track the target. Examples illustrating the differences of
accuracy are shown in Fig. 9.

As FA is a heuristic optimisation technique, it is interesting
to carried an experiment of robustness analysis. We run these
four algorithms on this video sequence for 20 times and
obtained the results of stability analysis. We calculated the
standard deviation (Std.Dev) of each frame, obtained a
sequence of Std.Dev values. Generally, parameter Std.Dev
denotes the stability of a tracker objectively. Comparative
results are shown in Fig. 10.

15 i 1 i L i 1 " il
—FA
PF
Meanshift
—PSO
10 4

Std.Dev

L] Ll b T . I . T b I
0 200 400 600 800 1000
Frame number

Fig. 10 Tracking stability comparisons of different trackers
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Table 1 Average time cost for ‘Panda’ sequence

Tracking methods Time cost, ms

PF_300 8.46777
PF_500 17.6592
meanshift 7.37305
PSO 80.1564
FA 6.10811

It can be seen from Fig. 10 that meanshift is the most stable
tracker among the four trackers. Although FA and PSO are
heuristic optimisation techniques, the stability of two
trackers are as good as particle PF (500 particles in this
experiment). It is worth mentioning that the robustness
analysis of a tracker is built on the basis of its tracking
accuracy. It is not of much value in analysis the stability of
a tracker with poor tracking accuracy.

In order to analyse the time complexity, the average time
costs of the four trackers are calculated and the comparative
results are shown in Table 1.

As depicted in Table 1, the FA-based tracker is faster than
the other four trackers on average. Especially, we can see that
the speed of FA-based tracker is by far faster than the
PSO-based tracker.

The second example, named ‘Person outside’ sequence,
was also recorded using a low-cost web cam. In this video,
a human target moves through an area with strong light and
tree shadows and occlusions. Besides, the quality of the
video is very low and the movement of the target is erratic.
All these challenging conditions can easily cause the tracker
to lose its target. Likewise, the Euclidean distance between
the true centre and the centre estimated by the trackers were
calculated and comparative results are shown in Fig. 11.

Fig. 11 shows a similar situation to the one in the first
example. The four trackers perform equally well in the first
150 frames where the target is not suffered from occlusion.
However, when suffered from serious occlusion, the
PF-based tracker and meanshift-based tracker lose the
target. In contrast, the PSO and FA-based tracker can still
robustly track it. Examples that illustrate the differences in
accuracy are shown in Fig. 12.

The average time of the four trackers in this example are
recorded and shown in Table 2.

It can be seen from Table 2 that, the average time cost of
FA-based tracker is a little more than meanshift but it is
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© | 4
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Fig. 11 Tracking accuracy comparisons of different trackers in

‘Person outside’
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Fig. 12 Examples illustrating the differences of accuracy in ‘Person outside’ sequence

a PF

b Meanshift
¢ PSO

d FA

better than the PF and PSO. Given that the meanshift-based
tracker loses the target when the target is suffered from
occlusion, the FA-based tracker outperforms the other
trackers.

In the third example, ‘Basketball’ sequence, the target
moves fast and irregularly and there are similar objects (e.g.
other balls and basketball hoop) that may cause the tracker
to lose its target. We choose this video to test the
performances of the four versions in tracking object with
rapid and erratic motion and similar object interference.
Speed and accuracy comparisons from this example are
shown in Table 3 and Fig. 13, respectively.

It can be seen from Table 3 that the time cost of FA,
although a little bigger than the MS-based tracker, is much
smaller than the other two trackers. Fig. 13 shows that the
PF-based tracker loses the target quickly at the 10th frame
and follows on the PSO-based tracker losing the target at
the 15th frame. The tracking performance of MS-based
tracker is better than the PF and PSO-based trackers.
However, the target still loses at about the 62th frame
where the target’s motion is rapid and erratic. Compared
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Table 2 Average time cost for ‘Person outside’ sequence

Tracking methods Time cost, ms

PF_300 15.6098
PF_500 30.3728
meanshift 7.71777
PSO 85.6481
FA 10.4688

Table 3 Average time cost for ‘Basketball’ sequence

Tracking methods Time cost, ms

PF_300 9. 6282
PF_500 15.4359
meanshift 3.1587
PSO 15.337

FA 3.3974
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Fig. 13 Tracking accuracy comparisons of different trackers in
‘Basketball’ sequence
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with the three methods mentioned, the FA-based trackers can
track the object successfully in the entire tracking process.
Tracking examples from this sequence are shown in Fig. 14.

The last example, ‘Kitbag’ sequence, comes from a
sequence recorded for the CAVIAR project [28]. In this
example, the target kitbag has a large scale change and
there are many passers which may interfere with the
tracking performance. We chose this video to test the four
trackers’ abilities to track object with scale change and
similar object interference. Tracking accuracy and speed
comparisons from this example are shown in Fig. 15 and
Table 4, respectively.

Table 4 shows that the speed comparison is similar to the
previous examples with the meanshift being the fastest and
the FA being the second fastest. However, it can be seen
from Fig. 15 that FA still outperforms the meanshift
because the tracking results of FA are more accurate than
the meanshift-based tracker. Tracking examples from this
sequence are shown in Fig. 16.

Before we move on to the conclusions it is worth
mentioning the theoretical advantages of the FA-based

Fig. 14 Examples illustrating the differences of accuracy in ‘Basketball’ sequence

a PF

b Meanshift
¢ PSO

d FA
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Table 4 Average time cost for ‘Kitbag’ sequence

Tracking methods

Time cost, ms

PF_300 29.6801
PF_500 55.069
meanshift 11.5482
PSO 122.124
FA 18.5421

100 — —
] ——FA
90 — PF_300
» 801 PF_500
@ j IWR —— Meanshift
X 70 fiy A0 M PsSO
=3 1 -'|."'It'|, '1 w !
£ 601 |” ll B
g ] A b } "
e 501 N D, | 0
1 | i L i\
S 1 P v
40 : W |
= 1 f
S 304
b |
2 204
S ] ' j i
m 10 il m '
j 1 " J
il .',‘{'a.hu'{r AP0, gl
T hy I bl T s I ¥ T x Ll vl T N
0 50 100 150 200 250 300 350

Frame number

Fig. 15 Tracking accuracy comparisons of different trackers in
‘Kithag® sequence

tracker. Firstly, compared with PF, FA makes better use of the
information.
only used

observational
information is

most recent
observational

In PF, the
to evaluate

the particles and is not used to change the location of the
particles in the search space. In contrast, FA is based on
swarm intelligence and the agents in the population can
exchange information frequently based on the current
observational information during the movement. Secondly,
compared with the meanshift, FA is more robust to local
distractors. As we know, most of models encountered in
visual tracking are nonlinear, non-Gaussian, multi-modal or
any combination of these. Meanshift is a gradient-based
optimisation algorithm and it is computationally efficient.
However, it may converge to local maximum and sensitive
to background distractors, clusters, occlusions and quick
moving objects [10]. Contrarily, in FA, the agents explore

Fig. 16 Examples illustrating the differences of accuracy in ‘Kitbag® sequence

a PF

b Meanshift
¢ PSO

d FA
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the search space locally, aided by randomisation which
increases the diversity of the solutions on a global scale,
and thus there is a fine balance between local intensive
exploitation and global exploration. Thirdly, as pointed out
by Yang [17], compared with PSO, FA is more general.
There are two important limiting cases in (6), say y — 0 and
¥y — o0. If y — 0, the light intensity does not decrease in an
idealised sky and a flashing firefly can be seen anywhere in
the domain. It corresponds to a special case of PSO. If
y — oo, each firefly roams in a completely random way. As
FA is usually in somewhere between these two extremes, it
can outperform PSO by adjusting the parameter ¥ and a.

6 Conclusions and future work

In this paper, a novel application of FA is presented to solve
tracking problem. A general optimisation-based tracking
architecture is proposed and the parameters’ sensitivity and
adjustment of the FA are studied. Experimental results
show that the FA-based tracker can robustly track an
arbitrary target in various challenging conditions. We
compare the speed and accuracy of the FA with three
typical tracking algorithms including the PF, meanshift and
PSO. Comparative results show that the current version of
the FA-based tracker outperformed the PF, meanshift and
PSO in all of our experiments. To the author’s knowledge
this is the first time that the FA has been adapted for use in
a visual tracking system and our initial results showed it to
be a superior alternative to the popular PF, meanshift and
PSO approaches.

It is worthwhile to note that in the current version only a
single object is tracked. How to track multiple objects in
the FA based tracking system would be left behind to
further research. Besides, in Section 4, the parameter tuning
is made under the assumption that these parameters are not
correlated and can be optimised independently. Relaxing
this assumption would likely deliver more optimal values
and further study into this is anticipated. Furthermore,
recent developments from research in the adaptive
appearance model showed that on-line boosting feature
selection algorithm for tracking is a good way to adjust the
tracking algorithm to various challenging tracking
environments [29, 30]. Therefore it is the theme of ongoing
research to introduce this feature selection algorithm into
our tracking system.
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