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ABSTRACT

In this paper, a manifold learning based method named local maximal margin discriminant embedding
(LMMDE) is developed for feature extraction. The proposed algorithm LMMDE and other manifold learn-
ing based approaches have a point in common that the locality is preserved. Moreover, LMMDE takes con-
sideration of intra-class compactness and inter-class separability of samples lying in each manifold. More
concretely, for each data point, it pulls its neighboring data points with the same class label towards it as
near as possible, while simultaneously pushing its neighboring data points with different class labels
away from it as far as possible under the constraint of locality preserving. Compared to most of the
up-to-date manifold learning based methods, this trick makes contribution to pattern classification from
two aspects. On the one hand, the local structure in each manifold is still kept in the embedding space;
one the other hand, the discriminant information in each manifold can be explored. Experimental results
on the ORL, Yale and FERET face databases show the effectiveness of the proposed method.
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1. Introduction

Face recognition has attracted wide attention of the researchers
in the fields of pattern recognition and computer vision because of
its immense application potential. Many face recognition methods
have been developed over the past few decades. One of the most
successful and well-studied techniques to face recognition is the
appearance-based method. In an appearance-based technique, a
two-dimensional face image of size w by h pixels is represented
by a vector in a w x h-dimensional space. In practice, however,
these w x h-dimensional spaces are too large to allow robust and
fast recognition. A common way to attempt to resolve this problem
is to use dimensionality reduction techniques. Two of the most
popular dimensionality reduction methods are principal compo-
nent analysis (PCA) [1] and linear discriminant analysis (LDA) [2].

PCA is a classical dimensionality reduction and data representa-
tion technique widely used in pattern classification and visualiza-
tion tasks. PCA is an unsupervised method, which aims to find a
linear mapping that preserves the total variance by maximizing
the trace of feature variance. The optimal mapping is the leading
eigenvectors corresponding to the largest eigenvalues of the
covariance matrix for data of all classes.
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LDA produces an optimally discriminative projection for certain
cases. LDA searches for the transformation that maximizes the be-
tween-class scatter and at the same time minimizes the within-
class scatter. Different from PCA which is completely unsupervised
with regard to the class information of the data, LDA takes full con-
sideration of the class labels and it is generally believed that LDA is
able to enhance class separability. Despite the success of the LDA
algorithm in many applications, its effectiveness is still limited
since, in theory, the number of available projection directions is
lower than the class number. Furthermore, class discrimination
in LDA is based upon within-class and between-class scatters,
which is optimal only in cases where the data of each class is
approximately Gaussian distributed, a property that cannot always
be satisfied in real-world applications. At the same time, LDA can-
not be applied directly to small sample size problem [3] because
the within-class scatter matrix is singular [2]. To avoid the singu-
larity problem of LDA, Li et al. [4] used the difference of both be-
tween-class scatter and within-class scatter as discriminant
criterion, called maximum margin criterion (MMC). MMC has the
advantages of effectiveness and simplicity.

Recent studies [5-7] have shown that the high-dimensional
data possibly resides on a nonlinear sub-manifold. However, both
PCA and LDA effectively see only the global Euclidean structure.
When they are applied to face recognition, they fail to discover
the underlying structure, if the face images lie on a nonlinear
sub-manifold hidden in the image space. Some nonlinear
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techniques have been proposed to discover the nonlinear structure
of the manifold. The basic assumption of manifold learning is that
the input data lie on a smooth low-dimensional manifold. Each
manifold learning based method attempts to preserve a different
geometrical property of the underlying manifold. The representa-
tive ones include Isomap [5], LLE [6], Laplacian Eigenmap [7] and
local tangent space alignment (LSTA) [8]. These nonlinear methods
do yield impressive results on some benchmark artificial data sets.
However, they yield maps that defined only on the training data
points and how to evaluate the maps on novel test data points re-
mains unclear. To overcome this limitation, He et al. extended
Laplacian Eigenmap to its linearized version, i.e. locality preserving
projection (LPP) [9-13] for an explicit map. LPP attempts to con-
struct a nearest neighbor graph and then evaluate the low-dimen-
sional embedding to best preserve local structure of the data set.

Although LPP is effective in many domains, it is unsupervised
and its unsupervised nature restricts its discriminating capability.
To consider class label information in LPP, several supervised LPP
methods [14-21] have been developed. Local discriminant embed-
ding (LDE) [15] and marginal fisher analysis (MFA) [16], whose
objective functions are very similar, can also be viewed as super-
vised LPP methods. This is because their training phases both ex-
ploit the class label information of samples. They are derived by
using a motivation partially similar to LPP and each of them is
based on an eigen-equation formally similar to the eigen-equation
of LPP. On the other hand, since LDE and MFA partially borrow the
idea of discriminant analysis and try to produce satisfactory linear
separability, their ideas are also somewhat different from the idea
of preserving the local structure of LPP. LDE and MFA can be
viewed as two combinations of the locality preserving technique
and the linear discriminant analysis [22]. Compared with LDA, both
LDE and MFA do not depend on the assumption that the data of
each class is Gaussian distributed and can obtain more available
projection directions and better characterize the separability of dif-
ferent classes.

The purpose of LPP is to preserve the proximity relationship of
the input data. In LPP, by applying k nearest neighbor (k-NN) crite-
rion, any point and its k nearest neighbors are viewed as located on a
super-plane, where all the descriptions in linear space can be per-
formed. A common problem with the classical LPP and several
supervised LPP methods [14,17,18] is that they might not necessar-
ily discover the most discriminative manifold for pattern classifica-
tion tasks because the manifold learning is originally modeled based
on a characterization of “locality”, a model that has no direct con-
nection to classification. This is unproblematic for existing LPP algo-
rithms as they seek to model a simple manifold, for example, to
recover an embedding of one person’s face images. In face recogni-
tion each person forms his or her own manifold in the feature space
[23]. If one person’s face images do exist on a manifold, different
persons’ face images could lie on different manifolds. If the images
needed to be classified reside on multi-manifolds and two or more
models have a common axis, then the locality preserving algorithms
of manifold learning may result in overlapped embedding belonging
to different classes because to recognize faces it would be necessary
to distinguish between images from different manifolds. This prob-
lem is referred to as “overlearning of locality” [24].

In order to solve the problem of “overlearning of locality”, Yang
et al. proposed an unsupervised discriminant projection (UDP) [25]
method, which can be viewed as simplified LPP on the assumption
that the local density is uniform [26]. In the proposed method,
locality and non-locality are discussed in detail, where locality
means the sum of the squared distance between the points in k
nearest neighbors, and the non-locality denotes the sum of the
squared distance between two points not belonging to any k near-
est neighbors. In order to achieve a discriminative map, UDP aims
to find a linear transformation that maximizes the ratio of the

non-locality to the locality. In the literature [27], there is another
algorithm named locally preserving and globally discriminant pro-
jection with prior information (LPGDP) introduced to address this
problem. The LPGDP method utilizes prior misclassification rate
of between-class in the training data for the global discriminant
measure while using class labels for preserving locality. Besides,
Li et al. proposed a linear multi-manifolds learning based approach
called constrained maximum variance mapping (CMVM) [28].
CMVM aims at globally maximizing the distances between differ-
ent manifolds. After the local scatters have been characterized,
the CMVM algorithm focuses on developing a linear transforma-
tion that maximizes the dissimilarities between all the manifolds
under the constraint of locality preserving.

As discussed above, when LPP is used to map the high-dimen-
sional data into a low-dimensional feature space, it may produce
high between-class overlaps because of the “overlearning of local-
ity”. To solve this problem, the methods including UDP, LPGDP and
CMVM seek to find a transformation that separates different man-
ifolds after the local structure has been characterized. It is unprob-
lematic for these methods to effectively separate different classes
when the data distributed on a manifold have the same label. How-
ever, in practice, the local scatter is usually constructed according
to the k-NN criterion, which will bring another problem. It is that,
when there is large variation within the same class, the within-
class variation may be larger than the between-class variation,
which means that the neighbor relationship measured by the k-
NN criterion may be distorted. In other words, data samples resid-
ing on a manifold possibly have different labels. In this case, these
methods may not work well because of their common assumption
that the data distributed on a manifold have the same label.

In this paper, we propose an effective supervised manifold
learning algorithm, called local maximal margin discriminant
embedding (LMMDE) for feature extraction and recognition. The
proposed algorithm LMMDE incorporates LPP and MMC for data
analysis. Similar to MFA, LMMDE characterizes intra-class com-
pactness and inter-class separability to maximize the margins be-
tween different classes. One difference between MFA and the
proposed method lies that MFA neglects the local structure based
on the overall samples which may be helpful for classification. In
addition, both CMVM and LMMDE have the common purpose that
is to take class label information into account based on the prop-
erty of locality preserving, but they are essentially different be-
cause: (1) CMVM is originally designed to separate different
manifolds based on the assumption that the data distributed on
a manifold have the same label, while LMMDE is designed to re-
duce the between-class overlaps based on the assumption that
the data distributed on a manifold may have different labels and
(2) CMVM characterizes only the inter-class separability in a global
way, while LMMDE measures both the inter-class separability and
the intra-class compactness in a local way like MFA.

The rest of this paper is structured as follows: In Section 2, the
PCA, LDA, LPP are briefly reviewed. Section 3 describes the pro-
posed algorithm in detail. In Section 4 the proposed algorithm is
examined on three data sets and the experimental results are of-
fered. Section 5 finishes this paper with some conclusions.

2. Outline of PCA, LDA, LPP

Let us consider a set of n samples {xy,...,x,} takes values in an
N-dimensional image space, and assume that each image belongs
to one of C classes. Let us also consider a linear transformation that
maps the original N-dimensional space into a d-dimensional fea-
ture space, where N > d. The new feature vectors in the d-dimen-
sional space are defined by the following linear transformation:

y, =A%, k=1,....n 1)
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where A € R¥*¢ is a transformation matrix.
2.1. Principal component analysis (PCA)

PCA seeks to find a transformation matrix such that the global
scatter is maximized after the projection of samples. Let St be the
total scatter matrix:

n
T
Sr=>"(%—m)x —m) )
i=1
where m is the mean of total training samples. The PCA transforma-
tion matrix is defined as:

Apca = arg max|tr(ATSA)] 3)
A

where tr(-) denotes the trace of a matrix.

Then the transformation matrix A that maximizes the objective
function is obtained by solving the following generalized eigen-
value problem,

StA =JA (4)

2.2. Linear discriminant analysis (LDA)

LDA is a supervised algorithm, which seeks to find a transforma-
tion matrix such that the fisher criterion (i.e. the ratio of the be-
tween-class scatter to the within-class scatter) is maximized
after projection of samples. The between-class and within-class
scatter matrices Sz and Sy, are defined by:

Sp = ini(mi —m)(m; —m)" (5)

c n
Sw= "3 "0 —my)(d —my)’ (6)
i1 j=1
where C denotes the total class number and n; denotes the number
of training samples in the ith class; m; is the mean vector of the ith
class samples and m is the mean vector of total training samples; xj
is the jth sample in the ith class.
The LDA transformation matrix is defined as:

tr(A"SzA)

tr(A"SwA)
The optimal transformation matrix that maximizes the objec-

tive function is composed of eigenvectors associated with d top

eigenvalues of the following generalized eigenvalue eigen-

equation,

SgA = JSwA (8)

Alpa = arg max
A

(7)

Note that there are at most C — 1 non-zero (or available) general-
ized eigenvalues.

2.3. Locality preserving projection (LPP)

LPP aims at finding a transformation that preserves local struc-
ture of the samples, i.e. the neighbor relationship between samples
so that samples that were originally in close proximity in the ori-
ginal space remain so in the new space. Firstly an adjacency graph
G ={V,E} is constructed using the k-NN criterion, where G denotes
the graph, Vis the node set and E is the edge set. Then an adjacency
matrix W is defined, whose elements used to characterize the like-
lihood of two points are given by using the heat kernel weight
below:

2 PP . . .
Wy = exp(~[lxi = X;{|°/0), if j € Ni(i) or i € Ni(j) ©)
0 otherwise

or simply 0-1 way,

]7
w-{!

where t > 0 is an adjustable parameter, N,(i) is the set of k nearest
neighbors of x;. In fact, the 0-1 way is a special case of (9) when
t=+o0.

Due to introducing the adjacency matrix W, the local scatter
matrix S; can be expressed to:

if j € Ni(i) ori € Ni(j)

10
otherwise (10)

S :%iiwg(xi —x) (% —x)" =X(D - W)X" = XLX" (11)

i=1 j=1

where L =D — W is the Laplacian matrix and D is a diagonal matrix
whose entries are column (or row, sin W is symmetric) sum of W,
ie. D; = Z;:] W,j

To preserve local scatter of the manifold, LPP seeks an optimal
linear subspace to minimize the following constrained objective
function:

Arpp = arg min tr(A'XLX"A) (12)
ATXDXTA=I
The transformation matrix A that minimizes the objective func-
tion are given by the minimum eigenvalue solutions to the follow-
ing generalized eigenvalue problem,

XLX"A = JXDX'A (13)

3. Local maximal margin discriminant embedding (LMMDE)
3.1. Motivation

The k-NN criterion is a common way to construct a local neigh-
borhood graph to model a manifold. Given an appropriate neigh-
borhood size k, define a graph G with the data points as the
vertices by the means of k-NN method. For the training data, each
point is connected to its nearest neighbors in the training set.
Apparently, the nearest neighbor approach cannot guarantee a
connected graph. At this step, several disconnected graph compo-
nents may be obtained and each graph component can be consid-
ered as a data manifold [23]. If two points A and B reside on two
manifolds respectively, we can get that A and B are not neighbors
of each other, i.e. A ¢ Ni(B) and B ¢ Ni(A). When LPP is used to pro-
ject the data onto a feature space so that the neighbor relationship
of the data set is preserved, it may produce high between-class
overlaps. As described above, one reason may be that data points
from different classes are evaluated to distribute on a manifold
by using the k-NN criterion, and then they get mapped close to-
gether in the feature space. Fig. 1 illustrates an example of three
classes (class 1 (), class 2 (A), class 3 (O)).

From Fig. 1a, we can see that: (1) two disconnected graph com-
ponents (data manifolds) are formed and (2) x; and its neighbors
not only from Class 2 but also from Class 3 reside on a manifold.
From Fig. 1b, we can see that: (1) after LPP projection, data points
distributed on a manifold are clustered together and (2) Classes 2
and 3 are partially overlapped due to preserving the neighbor rela-
tionship of data points in a manifold. This limitation may be over-
come by developing a criterion that characterizes intra-class
compactness and inter-class separability of data points in the man-
ifold. Motivated by this, we propose a new algorithm, called local
maximal margin discriminant embedding (LMMDE). After projec-
tion by LMMDE as shown in Fig. 1c, x; and its neighbors are still liv-
ing on a manifold, but data points from different classes in the
manifold have been well separated.
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Fig. 1. An illustration of LPP and LMMDE: (a) samples in original space; (b) samples projected by LPP; (c) samples projected by LMMDE.

3.2. Formulation of the between-class neighborhood scatter

In order to characterize the inter-class separability, for each
data point, we need to push its neighboring data points from differ-
ent classes away from it as far as possible. Let [; € {1,...,C} denote
the class label of x; As mentioned in Section 2.3, if j € Ny(i) or
i € Ni(j), then x; is thought to belong to the neighborhood of x;. Note
that, the neighborhood of x; possibly contains the data points hav-
ing the same label as x; or having different class labels from x;.
Thus, the between-class neighborhood Nﬁ (i) of x; is defined as:

= {x;|if j € Ni(i) ori € Ne(j), li#l,i,j=1,...,n} (14)

To separate x; from its neighboring data points with different
class labels, we consider enlarging the distance between x; and
the mean of its between-class neighborhood in the projected space,
i.e.

>

y
| I
|Nk( )| ]ENt( i), \Nb( i)|#0

where | - | represents the cardinality of a set.
Then the total between-class neighborhood scatter (see the der-
ivation in Appendix A) can be defined as:

2
1
S = Y — ——— \Z
b= 2| IN; (i) 2

= tr(A"S,A)
i JENE (i) N2 (i) 40

(15)

(16)

where S, is called the between-class neighborhood scatter matrix
which is calculated as:

T
1 1
S”:Z Xi— b Z h N K vy Z X
i ‘qu()|JeN%>\Nb (i)|0 IPJk(0|jeNﬂUJNﬂUN#0

(17)

3.3. Formulation of the within-class neighborhood scatter

In order to characterize the intra-class compactness, for each
data point, we need to pull its neighboring data points of the same
class toward it as near as possible. Similarly, the within-class
neighborhood N}/ (i) can be defined as:

Ny (i) = {x[if j € Ni(i) ori € Ne(j), li = I, i), i,j=1,....,n} ~ (18)

To compact x; and its neighboring data points having the same
class label as it, we focus on reducing the distance between x; and
the mean of its within-class neighborhood, i.e.

2

Vi (19)

JINY ()]0

1

YT INE @)

JENY (i)

Then the total within-class neighborhood scatter (see the deri-
vation in Appendix A) can be formulated as:

2

1 = tr(A'S,A)

IN¢ (D)

Vi — (20)

Su=>_

1

Yi

JENY (i), INY (i)#0

where S, is called the within-class neighborhood scatter matrix
which is computed as:

T
1 1
Sw=> [X—m Y. X || %o ooox
i ( |Nk()|]eNW()\NW (i)]#0 [N (l)|jeN):V(i),\NZV(i)\#O

(21)

3.4. The objective function and the algorithm of LMMDE

The objective function of LMMDE is constructed from two as-
pects: (1) characterizing intra-class compactness and inter-class
separability of data points in the manifold and (2) preserving the
local scatter. Therefore the transformation matrix A can be ob-
tained by solving the following objective functions:

argmax tr(A'S,A — A'S,,A) = argmax tr(A" (S, — Su)A) (22)
and
arg min tr(A'S]A) (23)

To eliminate the freedom that we can multiply A with some
nonzero scalar, we add the constraint,

ATA=1

where [ is an identity matrix.
Thus the goal of LMMDE algorithm is just to solve the following
optimization problem:

argmax tr((1 — A’ (S, — Sw)A — UA'S,A)

stATA=1 24
where 0 < ¢t < 1 is a non-negative constant to balance the two terms
of the objective function. Note that, both the formulations (22) and
(24) are developed based on the MMC [4] to avoid the singularity
problem.

Using the Lagrangian method, we can easily find that the opti-
mal projection vectors a,...,ay can be selected as the d eigenvec-
tors corresponding to the first d largest eigenvalues of the
following generalized eigenvalue problem:

(1= f0)(Sy — Su) — HSy)A = A (25)

As the previous description, the proposed LMMDE algorithmic
procedure can be summarized as follows:
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1. For a high-dimensional application, we first project a data set
{x;}_, into an m dimensional PCA subspace to reduce noise
by retaining a certain portion of energy. For simplicity, we still
use {x;} to denote the data projected in the PCA subspace in the
following steps, let Wpcs € R¥*™ denote the transformation
matrix of PCA.

2. Construct the adjacency matrix W using Eq. (10) and then com-
pute the local scatter matrix S; using Eq. (11), i.e.

n n
S, = %ZZwij(x,— —x) (% —x)" =X(D - W)X" = XLX"
i=1 j=1
3. Use Eq. (14), ie.
Ny (i) = {x]if j € Ni(i) ori € Ni(j), li#l;,i,j = 1,...,n}, to deter-
mine the between-class neighborhood of each data point, and
use Eq. (17), i.e.

T
1 1
szz X,‘—iNb - Z Xj Xi—iNb - Z Xj
i N jenp oo 0 INCOljenp i w0

to compute the between-class neighborhood scatter matrix Sp.

4., Use Eq. (18), ie.
NY (i) = {x;|if j € N (i) or i € N¢(j), l; = I, i#4,i,j=1,...,n}, to
determine the within-class neighborhood of each data point,
and use Eq. (21), i.e.

T
1 1
R S Rl SR | TP DR
i T A5 jen i), INY (i) <0 T A5 jen i), INY (i) <0

to compute the within-class neighborhood scatter matrix S,,.

5. Solve the eigenvalue problem ((1 — p)(Sp — Sw) — USL)A = JA.
Let 11 > A, >...> Jq be the d largest eigenvalues of (1 — u)(Sp -
—Sw) — uS; and ay,. . .,aq be the associated eigenvectors.

6. The final projection matrix is A =ApcaAivmpe Where
Armmpe =[ai, - - ., aq).

4. Experiments and results

In this section, we will conduct some experiments to systemat-
ically evaluate the performance of the proposed algorithm LMMDE
and some other algorithms such as MMC [4], LPP [13], MFA [16],
UDP [25] and CMVM [28] on the real-work facial databases such
as ORL, Yale and FERET face data. It must be noticed that PCA is
firstly adopted to preprocess the data before implementing MMC,
LPP, MFA, UDP, CMVM and LMMDE for feature extraction. And
then, the nearest neighbor classifier is adopted to recognize the ex-
tracted feature.

For the manifold learning based methods such as LPP, MFA,
UDP, CMVM and LMMDE, the k-NN criterion is used to construct
graphs, and the 0-1 way is used to construct the adjacency
matrices.

4.1. Experiments on ORL database

The ORL [29] face database contains images from 40 individuals,
each providing 10 different images. The facial expressions and fa-
cial details (glasses or no glasses) also vary. The images were taken
with a tolerance for some tilting and rotation of the face of up to
20°. Moreover, there is also some variation in the scale of up to
about 10%. In our experiments, two kinds of ORL databases with
different resolutions are used to show the impact of resolution
on the performance of the compared methods. Fig. 2 shows sample
images of one person from the ORL face database.

On ORL database, the first [ (=2, 3, 4) images of each person are
selected to form the training sample set, and the rest 10-/ are used
to form the testing set. Note that all compared methods involve a
PCA phase for data preprocess. In this phase, nearly 88% image en-
ergy is kept. The parameters of each method are set as follows: for
LMMDE, the parameter p is empirically set to 0.1 and the neighbor-
hood size k varies from 1 to 10; for LPP and UDP, the neighborhood
size k varies from 1 to 10; for MFA, the two parameters k; and k;
are set to -1 and (I-1)*C (C is the number of classes),
respectively.

Figs. 3-5 show the recognition performance of different meth-
ods corresponding to dimensions when different trains are used.
Shown in Table 1 are the maximal recognition rates of MMC, LPP,
MFA, UDP, CMVM and LMMDE and the corresponding dimensions
(in the parentheses) when the first 2, 3, 4 images per class are used
for training and the remaining for testing. From the experimental
results, it can be found that LMMDE performs better than the other
methods no matter what the resolution of facial images is, and in
particular, when the training sample number is small, the LMMDE
algorithm significantly outperforms the other methods.

4.2. Experiments on Yale database

The Yale [30] face database contains 165 grayscale images of 15
individuals. There are 11 images per subject, one per different fa-
cial expression or configuration: center/left/right-light, w/wo
glasses, happy, normal, sad, sleepy, surprised, and winking. Two
kinds of Yale databases are used to observe the impact of the res-
olution on the performance of different methods. Fig. 6 shows sam-
ples images of one person from the Yale face database.

In the experiments, the first 4 images of each person are used
for training, and the remaining 7 images are used for testing. Note
that, the PCA method is firstly used as a preprocessing, by which
the original face images are projected into a subspace where 98%
image energy is kept. To find how the neighborhood size k affects
the recognition performance, we firstly set x4 to 0.1 and then
change k from 1 to 10 with step 1. Fig. 7 displays the recognition
rates with varied k. From Fig. 7, it can be found that LMMDE ob-
tains the best recognition rate with k=2 when the resolution of
each image is 32 x 32 pixels, and achieves the maximal recogni-
tion rate with k = 6 when the resolution of each image is 64 x 64
pixels.

(b)

Fig. 2. Sample images of one person from the ORL database, (a) 32 x 32 pixels; (b) 64 x 64 pixels.
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the dimensions when 2 trains are used on ORL database, (a) 32 x 32 pixels; (b) 64 x 64

the dimensions when 3 trains are used on ORL database, (a) 32 x 32 pixels; (b) 64 x 64

. the dimensions when 4 trains are used on ORL database, (a) 32 x 32 pixels; (b) 64 x 64
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Table 1

The maximal recognition rates (%) of MMC, LPP, MFA, UDP, CMVM and LMMDE and the corresponding dimensions (shown in the parentheses) on the ORL database when the first

2, 3, 4 images per class are selected for training and the rest for testing.

Method Resolution = 32 x 32 Resolution = 64 x 64
1=2 =3 =4 =2 =3 =4
MMC 82.50(28) 86.79(31) 91.25(42) 82.81(32) 85.36(42) 92.08(40)
LPP 76.25(18) 81.43(32) 88.75(50) 75.00(32) 81.79(43) 89.17(51)
MFA 81.87(23) 86.07(32) 90.00(44) 79.37(16) 85.36(38) 90.83(47)
uUDP 77.19(34) 85.71(36) 88.75(40) 78.75(28) 87.50(42) 90.83(42)
CMVM 79.06(30) 85.71(36) 90.42(41) 79.37(32) 87.14(43) 91.67(42)
LMMDE 86.88(30) 90.00(29) 92.92(23) 86.88(23) 91.43(39) 93.75(48)
-
. L - -
—o— Yale(32x32) —o6— Yale(32x32)
0.98F —— Yale(64x64) | 0-98_' —+— Yale(64x64) |

0.96

0.94

0.92F E

0.9 E

0.88 E

Recognition accuracy

0.86 i

0.84 E

0.82f i

08 L L L L L L L L

Fig. 7. Recognition rates with varied k on Yale database.

To find how the parameter p affects the recognition perfor-
mance, we set k to 2 and k to 6 for the two kinds of resolutions
of facial images respectively, and then change y from 0.1 to 0.9
with step 0.1. Fig. 8 shows the recognition rates with varied p. It
can be found that the recognition rates show the decreasing trend
with the increasing of y, which means that maximizing the dissim-
ilarities of data samples from different classes residing on a mani-
fold is more important than preserving the local scatter. Shown in
Table 2 are the maximal recognition rates of all the methods and
corresponding dimensions. From Table 2, we can find that the
LMMDE method performs best among all the methods.

Table 3 reports the computational cost of the proposed LMMDE
and other compared methods including MMC, LPP, MFA, UDP and
CMVM when they achieve the best recognition rates. Our hardware
configuration comprises a 2.2-GHZ CPU and 2 GB RAM. From Ta-
ble 3, we can see that the computational complexity of the pro-
posed algorithms for training is generally larger than other
methods and all the methods consume more training time when
the resolution of each image becomes larger. In practical

0.96

0.94

0.92

0.9}F E

0.88 E

Recognition accuracy

0.86 i

0.84 E

0.82f i

0.8 L L L L L L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H

Fig. 8. Recognition rates with varied u on Yale database.

applications, however, training is usually an offline process and
only recognition needs to be performed in real time. Thus, the rec-
ognition time is usually more of our concern than the training time.
As shown in Table 3, when the resolution is 32 x 32, the recognition
time of LMMDE is less than those of the other approaches, but when
the resolution is 64 x 64, the recognition time is more than those of
MMC, LPP, MFA and CMVM. The reason may be that the recognition
time has a close relation to the number of features, and the smaller
the number of features is the less time will be cost. From Table 2, we
can clearly see that, when the resolution is 32 x 32, the number of
features learned by LMMDE (which is equal to 13) is the smallest
among all the methods, but when the resolution is 64 x 64, the
number of features learned by LMMDE (which is equal to 43) is lar-
ger than the ones learned by MMC, LPP, MFA and CMVM.

4.3. Experiments on FERET database

The subset of FERET [31] face database contains 200 individuals
and seven images for each person. It is composed of images whose
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Table 2

303

The maximal recognition rates (%) of MMC, LPP, MFA, UDP, CMVM and LMMDE and the corresponding dimensions on the Yale database when the first 4 images per class are

selected for training and the rest for testing.

Resolution MMC LPP MFA uDP CMVM LMMDE
32 %32 94.29(14) 94.29(21) 96.19(27) 96.19(41) 95.24(43) 97.14(13)
64 x 64 95.24(14) 93.33(23) 96.19(31) 94.29(44) 94.29(38) 97.14(42)
Table 3 1 T T T T
CPU times (s) used by different methods on the Yale database. —e— FERET(32x32)
Method Resolution = 32 x 32 Resolution = 64 x 64 0.9 —*— FERET(80~80)
Training Recognition Training Recognition 09y 1
MMC 0.1600 0.0320 0.2030 0.0320 085} E
LPP 0.2500 0.0360 0.4210 0.0410 g
MFA 0.2960 0.0470 0.4850 0.0530 3 08 1
uDP 0.3280 0.0650 0.5310 0.0690 &
CMVM 0.2030 0.0680 03750 0.0580 § 078y 1
LMMDE 0.7500 0.0310 0.9370 0.0670 5 o7l )
o
4
065} 3
names are marked with two-character strings: “bd”, “bj”, “bf”, 06k
“be”, “bc”, “ba”, “bk”. This subset involves two facial expression
images, two left pose images, two right pose images and an illumi- 085} 1
nation image. All the images in subset are grayscale and cropped. 05 . . . .
To observe the impact of resolution on the performance of the ! 2 3 ‘ 7 8 8 10
compared methods, we use two kinds of FERET databases with dif-
ferent resolutions for experiments. Shown in Fig. 9 are two kinds of Fig. 10. Recognition rates with varied k on FERET database.
sample images with different resolutions of one person.
The first 4 images of each person are selected as training sam-
ples and the rest 3 images as test set. The PCA method is firstly
used as a preprocessing step, whose dimension is set by retaining ! i i i i i FERET'(32><32)
98% image energy. To observe the impact of parameters k and y on 0.95| —+— FERET(80%80) |
the recognition rates of LMMDE, we set the parameters as that on
the Yale database. Fig. 10 displays the recognition rates with varied 09r |
k. It can be found that LMMDE obtains the best recognition rate 0.85} i
when k equals 9 in the case that the resolution of each image is g
32 x 32 pixels, and obtains the best recognition rate when k equals g 08r |
5 in the case that the resolution of each image is 80 x 80 pixels. g 075k -
Fig. 11 shows the recognition rates with varied u. It can also be 2
found that the recognition rates decreases with the increasing of %’ 07r ]
1 both in two kinds of FERET databases, which demonstrates the T )65k -
importance of maximizing the dissimilarities of samples from dif-
ferent classes lying on a manifold. Shown in Table 4 are the maxi- 06r A
mal recognition rates of MMC, LPP, MFA, UDP, CMVM and LMMDE 055 > 3
and the corresponding dimensions (in the parentheses). From Ta-
ble 4, we can see that: (1) LMMDE outperform other methods both 002 03 o2 05 08 07 08 oo

on two kinds of FERET databases and (2) the performance of MMC
and LMMDE becomes better when the resolution of each image
tends to be larger, while the other methods are not.

H

Fig. 11. Recognition rates with varied u on the FERET database.

(b)

Fig. 9. Samples images of one person from the FERET database, (a) 32 x 32 pixels; (b) 80 x 80 pixels.
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Table 4

The maximal recognition rates (%) of MMC, LPP, MFA, UDP, CMVM and LMMDE and the corresponding dimensions (in the parentheses) on the FERET database when the first 4

images per class are selected for training and the rest for testing.

Resolution MMC LPP MFA UDP CMVM LMMDE
32 %32 58.50(26) 40.50(50) 56.67(42) 36.83(262) 36.50(254) 62.50(118)
80 x 80 60.50(35) 34.67(35) 55.50(20) 29.50(365) 3033(325) 65.83(370)
5. Conclusions , 1 :
Sy= Z Yi— Nb Y
i INi (1) ‘]ENb N2 (0)[#0

In this paper, a manifold learning based algorithm, namely
LMMDE, is proposed for face recognition and classification. The
proposed algorithm takes consideration of intra-class compactness
and inter-class separability of samples that lies on a manifold after
the local structure of the data have been characterized. So the pro-
posed algorithm becomes more suitable for classification, and the
experiments results on real-world data sets validate this result.

It must be noted that the pixel based approaches [32-38] are
reported to show better performance, but they are essentially dif-
ferent from the methods involving MMC, LPP, MFA, UDP, CMVM
and LMMDE in reducing the computational complexity and boost-
ing pattern matching results. MMC, LPP, MFA, UDP, CMVM and
LMMDE are all dimensionality reduction methods with the pur-
pose of transforming the original high-dimensional data into a
meaningful representation of reduced dimensionality. When the
representation is used for classification with a classifier, it will
save much time and enhance the pattern recognition results in
comparison with that the original data is directly used for classi-
fication. Instead of reducing the dimension of the original data,
the methods proposed in [32-38] mainly focus on learning differ-
ent classifiers (or pattern matching functions). In contrast to the
methods in [32-37], a fast illumination and deformation insensi-
tive image comparison algorithm [38] shows substantial improve-
ments in recognition accuracy and speed because it can vastly
simplify the calculations of matching functions and effectively
handle variations in illumination and moderate amounts of
deformation.

There are still several drawbacks existed in LMMDE to be con-
sidered in the future work. First, the proposed algorithm LMMDE
fails to work in the scenario that there is only a single sample per
person (SSPP) available during the training phase since the with-
in-class neighborhood scatter cannot be computed due to the lack
of samples. To address the SSPP problem in face recognition, there
have been some attempts in the literatures [39-48], which can be
mainly classified into three categories [44]: generic learning, vir-
tual sample generation, and image partitioning. Using the virtue
sample generation [46] and image partitioning [47] techniques
to extend LMMDE for solving SSPP problem is one goal in our fu-
ture work. Second, our method is linear, and extending it to a
nonlinear method using the kernel trick [49] is another goal in
the future. Third, the neighborhood size k and the parameter u
are very important in improving the performance of LMMDE, so
how to effectively set them is an interesting topic in future
research.
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Appendix A. Derivation of Egs. (16) and (20)

Substituting y; = ATx; into Eq. (16), we can see that:

T
1 1
=r{ > v > Y|y X Y
( i ( ‘Ng()‘jer i), IND (i) 20 INy (1)\}6,@ N ()10
T
1 1
=tr Z Alxi——— . Z ATXj Alxi—— L Z ATX]'
( i ( ‘Nk(MJENbl N2 ()]0 ‘Nk()‘ler N0
T
el m ez o))
i N jenp iy b o N jenp iy whio

=tr(A'S,A)
(26)

where ‘NW 5 jen N <0%i 1S the mean vector of the with-class
neighbor ood ofk Xi.

Similar to Egs. (16), (20) can be rewritten in a form of the matrix
trace as follows:

2
1
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where \NW W] DN ()N () #0Xi is the mean vector of the with-class
neighbor ood ofk Xi.
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