
 Procedia Computer Science 37 (2014) 160 – 167

1877-0509 © 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Peer-review under responsibility of the Program Chairs of EUSPN-2014 and ICTH 2014.
doi: 10.1016/j.procs.2014.08.025

ScienceDirect
Available online at www.sciencedirect.com

The 5th International Conference on Emerging Ubiquitous Systems and Pervasive Networks
(EUSPN-2014)

Formal verification of a new version of AOMDV in ad hoc network
Djellouli Ahmed Aminea,*, Abdi Mustapha Kamela, Kechar Bouabdellaha

a Faculty of Exactes and Applied Sciences, Laboratory of Industrial Computing and Networking PO Box 1524 El M'naouar Oran University,
Oran 31000, Algeria

Abstract

In ad hoc networks like MANET the topology change frequently and interferences problems are inevitable in many
cases, as a result link failures can arise. Unfortunately, traditional routing algorithms are no more suitable for this
kind of networks especially in case of using a single path routing schemes. In order to overcome this problem,
multipath routing approach is proposed where in some cases as an extension of the traditional routing algorithms.
Our aim in this paper is to propose a formal study based on model checking to formally verify an enhancement
version of AOMDV. In this new version we have added new functionalities in ROUTE DISCOVERY and ROUTE
MAINTENANCE to achieve energy efficiency, packet overhead minimization and latency reduction.

© 2014 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of Elhadi M. Shakshuki.

Keywords: Ad-hoc networks; routing protocols; Formal verification; model checking;

1. Introduction

A mobile ad-hoc network or MANET is a collection of mobile nodes sharing a wireless channel without any
centralized control. Each nodes act as both end systems and routers at the same time. In this kind of network with all
nodes capable of movement or any other kind of network where the topology changes frequently, manage
communication is very difficult especially on single path routing algorithm. We distingue tree types of routing
algorithms: proactive protocol which continuously exchange routing information between the nodes; reactive

* Corresponding author. Tel.: +213-772-296145.

E-mail address: djellouli_a@ymail.com

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Peer-review under responsibility of the Program Chairs of EUSPN-2014 and ICTH 2014.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.08.025&domain=pdf

161 Djellouli Ahmed Amine et al. / Procedia Computer Science 37 (2014) 160 – 167

protocol which built route on demand and hybrid protocol the combination of the two. The major drawback of
proactive protocol is that the maintenance of unused paths may occupy an important part of the available bandwidth
if the topology changes frequently1. Reactive routing protocols have some inherent limitations. First, since routes are
only maintained while in use, it is usually required to perform a route discovery before packets can be exchanged
between communication peers. This leads to a delay for the first packet to be transmitted. Second, even though route
maintenance for reactive algorithms is restricted to the routes currently in use, it may still generate an important
amount of network traffic when the topology of the network changes frequently. Finally, packets to the destination
are likely to be lost if the route to the destination changes1. Several performance studies2,3 of ad hoc network have
shown that on demand protocols incur lower routing overheads compared to the proactive protocols. However, in
dynamic network the performance will be reduced due to frequent route discovery (i.e. high route discovery latency
and overhead). In order to overcome the limits of those protocols, multipath routing algorithm have been developed
to overcome these limits by computing several path in a single route discovery attempt. In this case, whenever a
route is broken the node will just skip to the alternative path without the need of a route discovery process, which is
time intensive. An example of multipath routing algorithm AODVM4 and AOMDV5, both of these protocols are
bases on the Ad hoc On demand Distance Vector AODV6, which work on the principle of creating routes only if it is
required between a source and destination. In spite of AOMDV which incurs more routing overhead and packet
delay than AODV, many studies7,8 has shown that AOMDV results is superior than AODV when there is mobility
induced link break in distributed environment. The idea is to improve AOMDV in such a way to give better
performances by reducing the routing overhead. To prove the good functioning of our new algorithm, we pass by a
formal verification using the model checking9. This one has been successfully employed to detect ambiguities in the
standard AODV and its implementations10,11,12. When model checking is applicable in large network protocol, such
deep errors are found13,14,15. It consist first to build a model for the system then to verify it against specifications
(expressed in a temporal logic), using a software tool called model checker. We use the tool UPPAAL instead
others, due to its facilities to model the timed aspects16,17 and especially the notion of broadcast communication that
can be modeled in an easiest way18. Also, UPPAAL includes techniques to minimize and avoid falling into situations
of explosion state19.

The rest of this paper is organized as follows: in section 2 we review the AOMDV protocol and detailed the
optimized version of AOMDV in section 3. Section 4 describes the modeling methodology under UPPAAL tool and
presents the verification of model results compared to the properties. Finally, Section 6 concludes the paper.

2. The Ad hoc On Demand Multipath Distance Vector protocol

Ad-hoc On-demand Multipath Distance Vector Routing (AOMDV) protocol is an extension to the AODV
protocol for computing multiple loop-free and link-disjoint paths7. AODV is an IP routing protocol using distance
vectors (measured with hops). It consists of two procedures:

 ROUTE DISCOVERY process: The source broadcasts the RREQ (ROUTE REQUEST) packet and waits the
reception of RREP packet (ROUTE REPLEY). When a node receives RREQ, it first checks if it is not a RREQ
that has received earlier or an old one. In case where it’s a new one, a reverse route is built to the previous node,
update the fields in the RREQ and forward it, otherwise it deletes. The RREP packet is sent to the source either
by an intermediate node who knows the route to the destination, or by the destination node itself.

 ROUTE MAINTENANCE process: This procedure allows a rollback to the source in case the route is broken in
order to update it or to discover another. A node reports its status to the neighbors by sending a message called
HELLO. In case where no HELLO message is received from a node, then a local route discovery is performed to
discover an alternative path. If no route is found, an error message is diffused called RERR (ROUTE ERROR).
All nodes receiving this packet invalid the route and the source node starts a new route discovery.

162 Djellouli Ahmed Amine et al. / Procedia Computer Science 37 (2014) 160 – 167

Before starting the description of AOMDV, we differ
between node-disjoint and link-disjoint routes. As
shown in Figure 1.a node-disjoint routes do not have
any common nodes in two routes, but in link-disjoint
two different routes may send over the same node in
Figure 1.b.

Fig. 1. (a) Node disjoints route; (b) link disjoints route.

2.1. AOMDV (Ad hoc On demand Multi-path Distance Vector)

Unlick in AODVM which is able to detect
multiple node-disjoint paths between source and
destination in one route discovery process, AOMDV
is able to detect multiple link-disjoint paths. When
receiving duplicate RREQ-packets, they are not
systematically discarded. Instead, whenever an
intermediate node receives a RREQ-packets it records
the source who generated the RREQ, the destination
for which the RREQ is intended, the neighbor who
transmitted the RREQ, and some additional
information (as shown in Fig. 2 (b)) in a table which
is referred as RREQ table.

Fig. 2. (a) Structure of the RREQ table entry in AODV; (b)
Structure of the each routing table entry in AOMDV

AOMDV has two main components:
a) A route update rule to establish and maintain multiple loop-free paths at each node.
b) A distributed protocol to find link-disjoint paths.

The routing entries for each destination contain a list of the next-hops along with the corresponding hop counts.
All the next hops have the same sequence number. This helps in keeping track of a route. Loop freedom is assured
for a node by accepting alternate paths to destination if it has a less hop count than the advertised hop count for that
destination, which is defined as the maximum hop count for all the paths and does not change for the same sequence
number. Whenever a greater sequence number is received for a destination, the next-hop list and the advertised hop
count are reinitialized.

To find multiple link-disjoint paths, AOMDV add a new field in the RREP-packets named “First Hop”, which
indicate the first neighbor of the source who has received the packet. Also, each node maintain a list called “first
hop-list” so that to keep a trace of the neighbors of the source which transmitted the RREQ-packet. Only one
version of the packet is rebroadcasted, but keeps in memory the neighbors who send the RREQ-packets in case
where the First Hop is different. This allows an intermediate node to know multiple node-disjoint paths to return to
the source. The destination responds to k copies of RREQ-packets arriving via the same neighbor (independent from
the First Hop) with RREP-packets in the corresponding reverse path.

Each intermediate node receiving this packet, choose one it neighbor from its routing table and transmit to him
the RREP-packet. In a case where multiple RREP-packets are received by the same node, this one takes in charge to
transmit each one of them to a different neighbor so that the RREP-packets follows path which are link-disjoint.

3. New optimized version of AOMDV

The idea is to improve AOMDV by minimizing the communication phases. What we try to do is to add the
strengths of AODVM to AOMDV to create a hybrid version of the two containing their benefits.

163 Djellouli Ahmed Amine et al. / Procedia Computer Science 37 (2014) 160 – 167

3.1. New ROUTE DISCOVERY process

Fig. 3. Algorithm route discovery process of the new AOMDV

In AODV each node has its own routing table, IP address and RREQ_ID. This list has been increased with a new
variable named RREQ_LIST which is a table containing the addresses of the last nodes that have broadcasted the
RREQ. If a node desires to know a route to a destination, it broadcasts a RREQ. Immediately upon receipt of the
packet, it will be either accepted or ignored according to the value of RREQ_ID and SOURCE_IP (same value or
greater). The RREQ will be rebroadcasted only if it is the first one received (RREQ_ID greater than the value stored
before), for the others only the value PREVIOUS_IP will be saved in RREQ_LIST. Those steps are executed and re-
executed until that the RREQ reaches the destination or a node that knows a path to destination. This node will
respond with a RREP. Each one receiving the RREP (different from the source node) retransmits it not on unicast
way but on multicast to all the nodes whose address was saved in the RREQ_LIST. This allows saving multiple
paths to the destination in case where it will receive several RREP. When the source receives the RREP, it starts the
transmission of data packets following the shortest path. To avoid a loop, each node who receives a RREP packet
from another whose address is stored in the RREQ_LIST will delete this entry from the table.

Fig. 4. Optimized version of AOMDV

3.2. New route maintenance

It is almost the same steps as AOMDV, except in case where a broken link is detected and there's no other route
stored, a RERR packet will be sent only to the nodes whose address were stored in RREQ_LIST in multicast way
(to avoid disturbing nodes not concerned) and the DATA packet will be sent back to the last one who have
transmitted it. This last node will choose another route in its table (if it exists), otherwise the DATA will be sent to
the earlier one. If the DATA reach the source node, this one will wait a while before restarting a new ROUTE
DISCOVERY.

164 Djellouli Ahmed Amine et al. / Procedia Computer Science 37 (2014) 160 – 167

4. Modeling the protocol using model checking

Formal verification is a combination of techniques
that allow verifying rigorously computer programs or
electronic equipment using mathematical logic in
order to demonstrate their validity. Their aim is to
establish system correctness with mathematical rigor.
Model checking is an automated technique that, given
a finite state model of a system and a formal property,
systematically checks whether this property is true for
all the states of the system. In this way, we can show
that a model system really satisfies a certain property.
Same errors that were not discovered using test and
simulation can be revealed using model checking.

Fig. 5. Schematic view of the model-checking approach19

4.1. Modeling methodology

Each node acts either as a transmitter, receiver or
an intermediate node. We propose a model of n-node,
where each one acts as a specific role and to reduce
the model, we will ignore HELLO message and the
fields ‘previous’ and ‘next sequence number’. The IP
addresses are represented with integer numbers from
0 to N-1, where the node “0” is the source and “N-1”
the destination, the rest is intermediates nodes which
are dispersed according to the topology showed in fig
6.

Also we have taken into consideration the case of packet losses. The functions of each node are described below:

 The source node: generate and send RREQ packets, receive RREP packets and transmit the DATA.
 The intermediate node: receive the RREQ, RREP, RERR and DATA packets and resend it.
 The destination node: receive the RREQ, RERR and DATA packets, also generate and send RREP.

4.2. UPPAAL models

A. Link failure
It simulates a link failure in the middle of data

transmission, between N1 and N2 or N1 and N3
according to the next hop of the DATA (data[2]) as
shown in fig 7.

Fig. 7. Template of link failure

B. Optimized version of AOMDV: the source node

First, the node starts with an initialization phase of its routing table, increments its id_broadcast, prepares the
RREQ packet and broadcast it. If no RREP is received, the NTT is doubled and another RREQ is rebroadcasted with
id_broadcast incremented, otherwise the routing table is updated and we begin the transmission of the DATA. While
sending the DATA, the node can choose another path to destination (if exist) if the first one is broken. If no other
route is known it discovers a new path.

Fig. 6. Topology of the network

165 Djellouli Ahmed Amine et al. / Procedia Computer Science 37 (2014) 160 – 167

Fig. 8. Source node template of the new version of AOMDV

C. Optimized version of AOMDV: the destination node

The destination node accepts the RREQ packet (if the conditions are met), updates its routing table and generates
the corresponding RREP. It also receives DATA and responds with the ACK corresponding and also may choose an
alternative path to the source whenever the selected route is broken.

Fig. 9. Destination node template of the new version of AOMDV

D. Optimized version of AOMDV: the intermediate node
The node initializes its routing table and waits to receive different packets (RREQ, RREP and DATA). This time

several packets can be accepted even if they have the same RREQ_ID. Also, if the link used to transmit the DATA
is broken, the node will choose directly an alternative path to destination. If there is no other path, a RERR packet is
sent only the nodes whose addresses were stored in the RREQ_LIST and the DATA is sent back.

166 Djellouli Ahmed Amine et al. / Procedia Computer Science 37 (2014) 160 – 167

Fig. 10. Intermediate node template of the new version of AOMDV

4.3. Properties analysis

A. Property 1: If a route exists then it will be found (reachability property) A[] no_route==TRUE

In the initial phase no_route will have the value TRUE, which means “no path is known between source and
destination”. This property means that the value of no_route will never change. If we can manage to find at least
one counterexample to it, the protocol is able to reach to destination (it can also not be able to find a route to
destination because we have taken into consideration the packet losses). The property is unsatisfied; this means that
there is a scenario where the source is able to discover a route to destination by receiving a RREP packet.

B. Property 4: The protocol will never fall into a loop (safety property) A[] n1.rt[4][2][0]<=4

“rt” references to the routing table associated to the node 1. The property is satisfied, thanks to RREQ_LIST
which deletes each entry associated to a node sending RREP. This new version of AOMDV also avoids falling in a
route discovery failure11, where RREQ_LIST requires each node to forward the RREP in multicast way to each
neighboring nodes whose address has been saved in this table.

C. Property 3: The protocol will never fall into a deadlock state (safety property) A[] not deadlock

The property is satisfied. This means that in any situation, thin or thick network, the protocol will be functional
and never falls into a deadlock state.

167 Djellouli Ahmed Amine et al. / Procedia Computer Science 37 (2014) 160 – 167

D. Property 2: Behavior of the protocols during a link failure (reachability property) E<> route_broke==false

The template Link Failure simulates a broken link in the middle of transmitting DATA using the variable etat
which indicates the state of the chosen path. It will have the value “2” or “3” (reference to the link between
“destination” and “N2”, “N3”). The variable route_broke take the value false only if “N1” choose an alternative
path to the destination after receiving the RERR. The property is satisfied; “N2”/“N3” will send the RERR only to
nodes whose addresses are stored in the RREQ_LIST instead of broadcasting it; after that “N1” choose directly the
second route to “D” stocked in its routing table. If there is no other path, then a RERR packet is sent only to “S”.

5. Conclusion

In this paper, an enhancement version of the routing protocol AOMDV was proposed, where the main objective is to
minimize the energy consumption and to discover multiple paths to a destination. In this new version, our focus was
mainly on reducing the number of packets transmitted while minimizing the number of conditions and tests required
compared to the old version. To validate it, we proposed a formal verification using a powerful model checking
approach. As a future remaining work, we plan to make a deep performance evaluation by simulation to show the
effectiveness of the new version of AOMDV over the old one.

References

1. H.D.Trung, W.Benjapolakul, P.M.Duc, “Performance evaluation and comparison of different ad hoc routing protocols”, Computer
Communications, Volume 30, Issues 11–12, 10 September 2007, Pages 2478–2496.

2. Nilesh P. Bobade, Nitiket N. Mhala, “Performance evaluation of AODV and DSR on-demand routing protocols with varying MANET size”,
International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 1, February 2012.

3. Pranav M. Pawar, Smita Shukla, Pranav Kulkarni and Adishri Pujari, “Simulation and Proportional Evaluation of AODV and DSR in Different
Environment of WSN”, BVICAM’s International Journal of Information Technology, accepted November 2010, January – June, 2011; Vol.
3 No. 1; ISSN 0973 – 5658

4. Zhenqiang Ye, Srikanth V. Krishnamurthy, Satish K. Tripathi, “A Framework for Reliable Routing in Mobile Ad Hoc Networks”
5. Mahesh K.Marina, Samir R.Das, “On-demand Multipath Distance Vector Routing in Ad hoc network”, Proceedings of the International

Conference for Network Protocols (ICNP), pp. 14–23, Nov. 2001.
6. C. E. Perkins, E. B. Royer, and S. R. Das, “Ad Hoc On- Demand Distance Vector (AODV) Routing”, RFC 3561, 2003.
7. S. R. Biradar, Koushik Majumder, Subir Kumar Sarkar, Puttamadappa C, “Performance Evaluation and Comparison of AODV and AOMDV”,

(IJCSE) International Journal on Computer Science and Engineering Vol. 02, No. 02, 2010, 373-377.
8. K.Vanaja, Dr. R. Umarani, “An Analysis of Single Path AODV Vs Multipath AOMDV on Link Break Using ns-2”, International Journal of

Electronics and Computer Science Engineering ISSN- 2277-1956
9. J.Edmund M.Clarke, O.Grumbdge, and D.A.Peledm “Model checking”, MIT Press, Cambridge, MA, USA, 1999.
10. Peter Höfner, Wee Lum Tan, Annabelle McIver, Rob van Glabbeek, Marius Portmann and Ansgar Fehnker, “ A Rigorous Analysis of AODV

and its Variants”, MSWiM '12 Proceedings of the 15th ACM international conference on Modeling, analysis and simulation of wireless and
mobile systems, Pages 203-212, 2012.

11. Peter Hofner and Maryam Kamali, “Quantitative Analysis of AODV and its Variants on Dynamic Topologies using Statistical Model
Checking”, Formal Modeling and Analysis of Timed Systems, Volume 8053, page 121-136, 2013.

12. M.Musuvathi, Dawson R.Engler “Model Checking Large Network Protocol implementations”, NSDI'04 Proceedings of the 1st conference on
Symposium on Networked Systems Design and Implementation - Volume 1, 2004.

13. K.L.McMillan, J.Schwalbe. “Formal verification of the gigamax cache consistency protocol”, In Proceedings of the International Symposium
on Share d Memory Multiprocessing, pages 242-51, Tokyo, Japan Inf. Process. Soc., 1991.

14. G. Nelson, “Techniques for program verification”, Stanford University, 1981.
15. U. Stern, D.L. Dill, “Automatic verification of the SCI cache coherence protocol”, In Correct Hardware Design and Verification Methods:

IFIP WG10.5 Advanced Research Working Conference Proceedings, 1995.
16. Sibusisiwe Chiyangwa, Marta Kwiatkowaska, “Analysing Timed Properties of AODV with UPPAAL”, FMOODS'05 Proceedings of the 7th

IFIP WG 6.1 international conference on Formal Methods for Open Object-Based Distributed Systems, pages 306-321, 2005.
17. Sibusisiwe Chiyangwa, Marta Kwiatkowska, “Modelling Ad hoc On-demand Distance Vector (AODV) Protocol with Timed Automata”, In

Proceedings of the Thirds Work6shop on Automated Verification of Critical Systems (AVoCS’03), Southampton, UK, April 2003.
18. Henrik Ejersbo Jensen Kim G. Larsen Arne Skou “Modelling and Analysis of a Collision Avoidance Protocol using SPIN and UPPAAL”,

BRICS RS-96-24, ISSN 0909-0878, July 1996.
19. J.Bengtsson, K.G.Larsen, F.Larsson, P.Petersson and W.YI. UPPAAL – a tool suite for symbolic and compositional verification of real-time

systems. In proceeding of the first workshop on tools and algorithms for the constructions and analysis of systems, volume 1019 of lecture
notes in computer science. Springer-verlag, May 1995.

19. Christel Baier and Joost-Pieter Katoen, “Principles of Model Checking”, The MIT Press, Cambridge, Massachusetts, London England, 2008.

