
 Procedia Computer Science   22  ( 2013 )  836 – 845 

1877-0509 © 2013 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of KES International
doi: 10.1016/j.procs.2013.09.166 

ScienceDirect
Available online at www.sciencedirect.com

17th International Conference in Knowledge Based and Intelligent Information and
Engineering Systems - KES2013

Efficient Maximum Range Search on Remote Spatial Databases
Using k-Nearest Neighbor Queries

Hideki Satoa,∗, Ryoichi Naritab

aSchool of Informatics, Daido University, 10-3 Takiharu-cho, Minami-ku, Nagoya, 457-8530, Japan
bAichi Toho University, 3-11 Heiwagaoka, Meito-ku, Nagoya, 465-8515, Japan

Abstract

Supporting aggregate range queries on remote spatial databases suffers from 1) huge and/or large numbers of databases, and
2) limited type of access interfaces. This paper applies the Regular Polygon based Search Algorithm (RPSA) to effectively
addressing these problems. This algorithm requests a series of k-NN queries to obtain approximate aggregate range query
results. The query point of a subsequent k-NN query is chosen from among the vertices of a regular polygon inscribed in
a previously searched circle. Experimental results for maximum range query searches show that Precision is over 0.87 for
a uniformly distributed dataset ,over 0.92 for a skew-distributed dataset ,and over 0.90 for a real dataset. Also, Number of
Requests (NOR) ranges between 3.2 and 4.3, between 3.9 and 4.9, and between 3.0 and 4.2, respectively.
c© 2013 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of KES International.
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1. Introduction

Recently, mobile computing has become a reality with the emergence of powerful mobile terminals, advances
in wireless communication technologies, and the proliferation of location positioning equipment. In addition, the
World Wide Web (WWW) is full of Web services disseminating their own information (i.e., digital maps, Points
of Interests (POIs), etc.). Among them, Location Based Services (LBS) are major mobile computing applications
that provide mobile users with location-dependent information and/or services. An exemplary LBS enables a
single user at a specific location to obtain POI information in his/her neighborhood.

Another potentially promising LBS is one for supporting a group of mobile users. Consider ,for example
,a group of mobile users, each at a different location (query point), wishing to obtain information about a POI to
enable them to meet there together. For such a group, Aggregate k-Nearest Neighbor (k-ANN) queries ([1],[2],[3])
and aggregate range queries are helpful. While the former finds POIs whose maximum (sum) of distances from
each query point is top-k minimum, the latter finds POIs whose maximum (sum) of distances from each query
point is within a certain distance.

∗Corresponding author. Tel.: +81-52-612-6111 ; fax: +81-52-612-5623.
E-mail address: hsato@daido-it.ac.jp.

Available online at www.sciencedirect.com

© 2013 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of KES International

Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


837 Hideki Sato and Ryoichi Narita  /  Procedia Computer Science   22  ( 2013 )  836 – 845 

In this example, it can be assumed that the location data for each mobile user is obtainable from a location
management server and that the POI information is accessible via other Web services. However, there are difficul-
ties in answering these queries by mashing up existing Web services for two reasons. First, the LBS has to access
its spatial databases for retrieving query results. If the databases are local and a query processing algorithm has
direct access to spatial indices (i.e., R-trees [4] and its variants), it can retrieve them efficiently. It cannot, however,
when queries are processed by accessing remote spatial databases that operate autonomously. Although some or
all of the data from remote databases can be replicated in a local database and a separate index structure can be
built, this is unfeasible when the database is huge or a large number of remote databases are accessed.

A further problem is access to spatial data on the WWW, which is limited to certain types of queries, due to
simple and restrictive Web API interfaces. A typical scenario is one of searching for the POI nearest to the address
given as a query point through a Web API interface. Unfortunately, Web API interfaces are not supported for
processing either k-ANN queries or aggregate range queries on remote spatial databases. In other words, a new
strategy for efficiently processing these queries is required.

This paper applies Regular Polygon based Search Algorithm (RPSA) to efficiently searching approximate
aggregate range query results. Assuming k-Nearest Neighbor (k-NN) queries [5],[6] are Web API interfaces
available for processing aggregate range queries, RPSA requests a series of k-NN queries to obtain aggregate
range query results. The query point of a subsequent k-NN query is chosen from among the vertices of a regular
polygon inscribed in a previously searched circle. We experimentally evaluated the algorithm in terms of Precision
and Number of Requests (NOR) for max range queries ,by using both synthetic and real datasets.

The rest of this paper is organized as follows. Section 2 mentions related work. Section 3 describes max
range queries and the difficulties in processing them for the later discussion. In Section 4 we present our RPSA
for aggregate range queries and in Section 5 experimentally evaluate it by applying to max range query searches,
using both synthetic and real datasets. Section 6 concludes the paper with a summary of key points and a mention
of future work.

2. Related Work

The existing literature in the field of location-dependent queries is extensively surveyed in the article[7]. The
many types of location-dependent queries include NN queries and range queries While NN queries [5], [6] retrieve
the objects of a certain class that are the closest to a certain object or location, range queries [8], [9], [10] retrieve
the objects within a certain range/region. Range queries can be static or moving/mobile, depending on whether the
interesting region is fixed or moves. Range queries are also called window queries when the range is a rectangular
window [11]. Similarly, within-distance queries[12] can be considered a variant of range queries where the range
is a circle.

Since Group NN queries find ANN objects, the studies [13],[14] are closely related to ours. Papadias et al.
[13] focused on Euclidean distance and the sum function. The work done by Yiu et al. [14] was more generalized
and dealt with network distance. However, their work differs from ours in two respects. First, it deals with local
spatial databases, while ours deals with remote ones. Second, it deals with ANN queries, while ours deals with
aggregate range queries.

The studies [15],[16] are also closely related to ours, because they deal with providing users with location-
dependent query results by using Web API interfaces to remote databases. The former [15] proposes a k-NN
query processing algorithm that uses one or more range queries to search for the nearest neighbors of a given
query point. The latter [16] proposes two range query processing algorithms that use k-NN searches. However,
our algorithm differs from theirs in that it deals with aggregate range queries by using k-NN searches, while theirs
don’t deal with queries of this type.

3. Preliminaries

Aggregate range queries are an extension of range queries [8], [9], [10]. Let p be a point and Q be a set of
query points. Then, aggregate distance function dagg(p,Q) is defined to be agg({d(p, q)|q ∈ Q}), where agg( ) is
an aggregate function (e.g., sum, max, min) and d( ) is a distance function. Given set P of data objects, set Q of
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query points, and range distance l, an aggregate range query finds all the data objects p in P, such that dagg(p,Q)
is within l, that is to say {p|p ∈ P, dagg(p,Q) ≤ l}.

Consider the example of Fig.1, where P(= {p1, p2, p3, p4}) is a set of data objects and Q(= {q1, q2}) is a set of
query points (e.g., locations of mobile users). The number on each edge connecting a data object and a query point
represents any distance cost between them. Table 1 presents dagg(p,Q) for each p in P. Here, the set {p1, p3, p4} is
sum range query results within 820, while the set {p1, p3} is the maximum range query results within 500.
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Fig. 1. Example query points (solid circles) and data points (hollow squares).

Table 1. Aggregate distance function applied to query points and data points shown in Fig.1.

aggregate function sum maximum minimum
dagg(p1,Q) 760 420 340
dagg(p2,Q) 860 580 280
dagg(p3,Q) 750 450 300
dagg(p4,Q) 800 560 240

In the rest of the paper, we confine the distance function to a Euclidean one and the aggregate function to
maximum. Let p be a point (x,y) and Q be a set of query points. The maximum distance function over Q of p,
dmax,Q(x, y) is defined in Eq.1. Figure 2(a) plots a contour graph of the maximum distance function dmax,Q(x, y)
over a set of 10 query points whose locations are randomly generated. Figure 2(b) presents contour lines that are
projected on the x-y plane of the contour graph shown in Fig.2(a). Since dmax,Q(x, y) is a convex function, there
certainly exists a single point at which the function value is the lowest.

dmax,Q(x, y) = max({
√

(x − xi)2 + (y − yi)2|(xi, yi) ∈ Q}) (1)

A contour graph of dmax,Q(x, y) slopes a little complicatedly (See Fig.2). For a point (x, y), dmax,Q(x, y) com-
putes its distance from query point qi, if it resides in the furthest point Voronoi region V(qi) with regard to qi

[17]. For (xi, yi)(∈ V(qi)) and (x j, y j)(∈ V(q j)) (i � j), the distinct query points qi and q j are used to compute
dmax,Q(xi, yi) and dmax,Q(x j, y j) respectively, even if V(qi) is adjacent to V(q j). This is the reason a contour graph
of dmax,Q(x, y) slopes a little complicatedly.

4. Search Algorithm For Aggregate Range Query

In this section, RPSA for aggregate range queries is described.

4.1. Consideration

k-NN queries are used to process max range queries. The circle of Fig.3 is the searched region of a k-NN
query, where k is 5. In the circle, q is a query point and the set {p1, p2, p3, p4, p5} is the query results. The radius
of the circle equals the distance r between the 5th nearest neighbor p5 and q. A max range query imposes upon
its result the condition that each max distance over a set of query points is within the range distance limit. A
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Fig. 2. Maximum distance function dmax,Q(x, y) (Euclidean distance, number of query points=10).

max range query result contains all the elements of {p1, p2, p3, p4, p5} (See Fig.3), if each satisfies this condition.
Additionally, other spatial data to be answered may reside outside the circle. However, the region where such data
reside cannot be analytically computed. Instead, a heuristic method is chosen for searching the regions.
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Fig. 3. Searched circle of 5-NN query (query point (solid circles) and data objects (hollow circles)).

Let q be a query point of a k-NN query, p be a point outside a searched circle, and v be the point at which
line segment pq and the circumference of the circle cross. Since dmax( ) is a convex function, Eq.2 holds for
q, p, v and set Q of query points of a max range query, where 0 ≤ α ≤ 1, β = 1 − α, v = αq + βp. In case
that dmax(q,Q) ≤ dmax(v,Q) holds, it is derived from Eq.2 where dmax(v,Q) ≤ dmax(p,Q) holds. Consequently,
dmax(p,Q) ≤ limit may hold under dmax(v,Q) ≤ limit. In the opposite case where dmax(q,Q) > dmax(v,Q) holds,
dmax(p,Q) ≤ limit may hold. Eq.3 is a logical formula regarding whether p may exist such that dmax(p,Q) ≤ limit
holds, which is derived by merging both cases.

dmax(v,Q) ≤ αdmax(q,Q) + βdmax(p,Q) (2)

(dmax(q,Q) ≤ dmax(v,Q) ∧ dmax(v,Q) ≤ limit) ∨ (dmax(q,Q) > dmax(v,Q)) (3)

Since an infinite number of points exist continuously on the circumference of a circle, which point on the
circumference should be chosen as v is problematic in searching the region for spatial data to be answered. A
regular polygon inscribed in a circle can be used to provide its vertices as candidates. Figure 4(a) shows an
inscribed 6-regular polygon. Assume that dmax(p4,Q) equals max({dmax(pi,Q)|1 ≤ i ≤ 5}). The first vertex v1 of



840   Hideki Sato and Ryoichi Narita  /  Procedia Computer Science   22  ( 2013 )  836 – 845 

the polygon is set to be a point at which the line extending the line segment p4q ahead of q and the circumference
of the circle cross 1. Each element of {v1, v2, v3, v4, v5, v6} can be chosen as a point for searching regions for spatial
data to be answered, if it satisfies Eq.3. A list of these vertices is called CQPlist (Candidate Query Point list).
Any k-NN query result whose query point is on CQPlist can be added to the max range query result ,if it satisfies
the condition that its max distance over Q is within the limit.
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(a) Inscribed 6-regular polygon (b) Subsequent 5-NN query search

Fig. 4. Additional k-NN query search whose query point is a vertex of n-regular polygon.

Figure 4(b) shows a newly searched circle of a 5-NN query with v1 as a query point. The set {p1, p3, p6, p7, p8}
is the query results. While p1 and p3 are re-searched points, p6, p7, and p8 are newly searched points. Any of
the latter three may be added to the max range query result ,if it satisfies the condition that its max distance over
Q is within limit. The new 6-regular polygon inscribed in the new circle provides its vertices. Each element of
{v7, v8, v9, v10, v11} can be added to CQPlist, if it satisfies Eq.3. However, v12 is not added to the list ,because it
resides inside the previously searched region. For the same reason, if either v2 or v6 is on the list, it is removed
from the list because it has been used as a query point.

4.2. Regular polygon based search algorithm

Figure 5 shows RPSA. A k-NN query with f qp as a query point is requested (line 1). Each element of the
query result is examined regarding whether it satisfies the condition that its max distance over qp is within the
limit (line 2). Clist maintains previously searched circles and is initialized (line 3). A circle with f qp as the center
is created (line 4) and the vertices of the regular polygon inscribed in the circle are gathered (line 5). CQPlist
is initially created (line 6), in which candidate query points are listed in order of ascending max distance. The
same process is repeated (line 7-15), until CQPlist becomes empty. The candidate query point with the leastmax
distance is selected as the query point (line 8) for a k-NN query (line 9). Each element of the query result is added
to Rlist 2 ,if it satisfies the condition that its sum distance over qp is within the limit (line 10). A searched circle is
created (line 12) and the vertices of the regular polygon inscribed in the circle are gathered (line 13).

CQPlist is related to the condition terminating the loop execution (line 7-15), which is initially created with at
most n candidate points (line 6). A single execution of the loop necessarily consumes a single query point that is
removed from CQPlist. In line 14, CQPlist is updated to be a list of elements in either CQPlist or a set of vertices
of the regular polygon inscribed in a searched circle (line 12) and satisfying two conditions. One is that its max
distance is the limit or less and the other is that it does not reside inside previously searched circles. The regions
of previously searched circles increase monotonically. Accordingly, the loop execution necessarily terminates.

1This is heuristically determined because p may reside on the line extending the line segment qv1 ahead of v1 such that dmax(p,Q) ≤ limit.
2Rlist is a list containing identifiers of data objects retrieved and is finally returned as the aggregate range query results (See Fig.5).
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Slist:=NEAREST_NEIGHBOR_SEARCH(k, fqp);
Rlist:=MAKE_RESULT_LIST(qp, limit, [], Slist);
Clist:=[];
circle:=MAKE_CIRCLE(fqp, DISTANCE(fqp, Slist));
Vlist:=MAKE_VERTEX_LIST(circle, n, MAX_AGGREGATE_DISTANCE_POINT(Slist, qp));
CQPlist:=MAKE_CANDIDATE_QUERY_POINT_LIST([], Vlist, qp, limit, Clist);
while(not(CQPlist=[])){

let search_point be the head element of CQPlist and CQPlist be the remaining list of CQPlist;
Slist:=NEAREST_NEIGHBOR_SEARCH(k, search_point);
Rlist:=MAKE_AGGREGATE_DISTANCE_LIST(qp, limit, Rlist, Slist);
Clist:=APPEND(Clist, circle);
circle:=MAKE_CIRCLE(search_point, DISTANCE(search_point, Slist));
Vlist:=MAKE_VERTEX_LIST(circle, n, MAX_AGGREGATE_DISTANCE_POINT(Slist, qp));
CQPlist:=MAKE_CANDIDATE_QUERY_POINT_LIST(CQPlist, Vlist, qp, limit, Clist);

}
return Rlist;

01    
02
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06
07
08
09
10
11
12
13
14
15
16

RPSA (qp, limit, k, fqp, n)
Input:

a set of query points
limit of aggregate distance over a set of query points
number of data to be returned for k-NN query
query point for first k-NN query
number of edges of a regular polygon

Output:
aggregate range query result

qp
limit  
k
fqp
n 

Rlist

Fig. 5. Regular Polygon based Search Algorithm RPSA.

5. Experimental Evaluation

We experimentally evaluated the performance of RPSA by measuring Precision and NOR over max k-th range
queries. Given set P of data objects, set Q of query points, and k(≤ |Q|), the range distance of a max k-th range
query is set to be dmax(p,Q)+dmax(o,Q)

2 , where p is the top-k minimum data object and o is the top-(k+1) minimum data
object 3. Precision is used as the criteria to specify the accuracy of max k-th range query results. It is defined
in Eq.4, where Rmax k−th range is the original max k-th range query result and RRPS A(max k−th range) is the query result
retrieved with RPSA. NOR is the requested number of k’-NN queries. Since the processing time for answering a
sum k-th range query with RPSA is approximately proportional to NOR (See Fig.5), NOR can be used as another
criteria for measuring performance. As the k of a max k-th range query increases, the region where the query result
resides becomes larger. Therefore, k’ is set to be equal to k to enable ,comparison among queries of different k.
Each experimental result is the average of 100 trials conducted for each setting. All the query point locations are
uniformly distributed. The minimal point 4 is used as a query point of the first k-NN search to retrieve a max k-th
range query.

Precision(max k − th range) =
|Rmax k−th range

⋂
RRPS A(max k−th range)|

|Rmax k−th range| (4)

3o is formally defined as follows. Let O be {o|o ∈ P, dmax(p,Q) ≤ dmax(o,Q)}. In case that O is empty, o is set to be p. Otherwise, o(∈ O)
is the data object such that dmax(o,Q) ≤ dmax(o′,Q) holds for all o′ ∈ O.

4Given set Q of query points, the minimal point corresponds exactly to the center of the Minimum Covering Circle (MCC) over Q.
Accordingly, it can be obtained with a computational geometric algorithm [17].
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5.1. Effects of regular polygon on performance

We measured how the number of edges of a regular polygon, one of the RPSA parameters (See Fig.5), affects
RPSA performance. Experiments regarding max 10th range queries were conducted by varying the value from 3
to 30, with 10,000 data points whose locations are uniformly distributed. Precision is over 0.9 when the value
is 26 or more (See Fig.6(a)). NOR does not increase in proportion to the value (See Fig.6(b)). These results
suggest that a regular polygon with 26 or more edges is sufficient to search for query results. We consider the
reason for this is as follows. A regular polygon inscribed in a searched circle is used to provide its vertices as
query point candidates for searching regions where spatial data objects to be answered may reside. In Section 3,
it is mentioned that a contour graph of dmax,Q(x, y) slopes a little complicatedly (See Fig.2). To find proper query
points it is necessary to minutely follow the contour surface of the complicated slopes of dmax,Q(x, y). This leads
to compact space intervals between the query point candidates.
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Fig. 6. Performance of max 10th range search for varying number of edges of a regular polygon.

5.2. RPSA performance for several types of datasets

We measured RPSA performance for several types of datasets. First, we conducted experiments by varying
the number of query points and the k of max k-th range queries, using 26 regular polygons and 10,000 data points
whose locations were uniformly distributed. In these experiments, we found that Precision was over 0.87 (See
Fig.7(a)) and that NOR ranged between 3.2 and 4.3 (See Fig.7(b)).
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Fig. 7. Performance of max k-th range search over data points of uniform distribution.

Second, we measured performance by using skew-distributed data points. We conducted experiments regard-
ing max 10th range queries by varying the number of query points, using 26 regular polygons and 10,000 data
points whose locations were generated from two-dimensional Gaussian distribution. We let the location of a data
point be (x, y) (x ∈ [0, 1), y ∈ [0, 1)). The mean point of Gaussian distribution was randomly generated and
the standard deviation (σ) was changed. Measured results showed Precision was over 0.92 (See Fig.8(a)) and
NOR ranged between 3.9 and 4.9 (See Fig.8(b)). The larger σ is, the more performance is like that for uniform
distribution. This is because the Gaussian distribution of large σ is similar to uniform distribution.

Third, we measured performance by using real data points. The points concerned restaurants located in Nagoya
and were available at the Web site and accessible via the Web API 5. There were 2003 corresponding restaurants,

5http : //webservice.recruit.co. jp/hotpepper/gourmet/v1/



843 Hideki Sato and Ryoichi Narita  /  Procedia Computer Science   22  ( 2013 )  836 – 845 

 0.8
 0.82
 0.84
 0.86
 0.88

 0.9
 0.92
 0.94
 0.96
 0.98

 1

 10  20  30  40  50  60  70  80  90  100

P
re

ci
si

on

Number of query points(|QP|)

σ=0.06
σ=0.10
σ=0.14

 0

 1

 2

 3

 4

 5

 10  20  30  40  50  60  70  80  90  100

N
um

be
r 

of
 R

eq
ue

st
s(

N
O

R
)

Number of query points(|QP|)

σ=0.06
σ=0.10
σ=0.14

(a) Precision (b) Number of Requests(NOR)

Fig. 8. Performance of max 10th range search over data points of Gaussian distribution.

most of them in downtown Nagoya. We conducted experiments by varying the number of query points and the k
of max k-th range queries, using 26 regular polygons and real data points. Measurement results showed Precision
was over 0.9 (See Fig.9(a)) and NOR ranged between 3.0 and 4.2 (See Fig.9(b)).
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Fig. 9. Performance of max k-th range search over real data points.

5.3. Precision improvement process

In this subsection, we experimentally clarify a Precision improvement process. Let 〈p1, p2, . . . , pn〉 be a
sequence of Precision values regarding max k-th range query results, where pi(1 ≤ i ≤ n) is Precision after
requesting the i-th k-NN query. Note that pi( f ≤ i ≤ n) is set to pf when NOR f is less than n. We conducted
experiments to compute a sequence of average Precision values for max 10th range queries by varying the number
of query points, using 26 regular polygons and 10,000 data points whose locations are uniformly distributed.
Figure 10(a) shows that Precision is over 0.87 after requesting the 5th 10-NN queries. We also measured the ratio
of exact results after requesting the i-th 10-NN query. However, exact results do not necessarily lead to immediate
termination of RPSA ,because the algorithm cannot completely determine whether exact results are obtained. It
therefore continues to execute until all available query points are exhausted. Conversely, it terminates its execution
when no available query points remain, even if it does not obtain exact results. Figure 10(b) shows that the ratio
of exact results was found to be over 0.6 after requesting the 5th 10-NN queries.
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Fig. 10. Precision improvement process of max 10th range query search.

5.4. Effects of first query point on performance

We measure how the query point of the first k-NN search, one of the RPSA parameters, affects RPSA perfor-
mance. We conducted experiments by varying the number of query points, using 26 regular polygons and 10,000
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data points whose locations are uniformly distributed. Figure 11 shows Precision and NOR of max 10th range
query results searched for by RPSA using each distinct query points. The minimal point is definitely superior to
the middle point 6 in Precision (See Fig.11(a)), although it is inferior to the middle point in NOR (See Fig.11(b)).
We consider that this is because RPSA tends to not find candidate query points for conducting subsequent k-NN
searches to achieve higher Precision ,if the middle point is used as the query point of the first k-NN search. This
probably leads to a smaller NOR than that of the minimal point for the first k-NN query.
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Fig. 11. Performance of max 10th range search with each distinct first query points.

6. Conclusion

This paper described the Regular Polygon based Search Algorithm (RPSA) as a means of efficiently searching
for approximate aggregate range query results. The algorithm requests a series of k-NN queries to obtain aggregate
range query results. The query point of a subsequent k-NN query is chosen among the vertices of a regular
polygon inscribed in a previously searched circle. Experimental max range query search results were as follows.
1) A regular polygon with 26 or more edges is sufficient to search for query results. 2) Precision is over 0.87
for a uniformly distributed dataset, over 0.92 for a skew-distributed dataset, and over 0.9 for a real dataset. The
respective Number of Requests (NOR) ranges between 3.2 and 4.3, between 3.9 and 4.9, and between 3.0 and 4.2.
3) Precision is over 0.87 after requesting the 5th k-NN queries and over 60% of the queries are exact results. 4)
As a query point of the first k-NN query, the minimal point is superior to the middle point in Precision. Our future
work will include improving RPSA performance for max range query searches.
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