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Built-In Self Test (BIST) techniques perform test pattern generation and response verifica-
tion operations on-chip. In Arithmetic BIST, modules that commonly exist in datapaths
(accumulators, counters, etc.) are utilized to perform the above-mentioned operations. In
order to detect faults that occur into current CMOS circuits, two-pattern tests are required.
Furthermore, delay testing, commonly used to assure correct temporal circuit operation at
clock speed requires two-pattern tests. In this paper a novel two-pattern test generator for
Arithmetic BIST is presented. Its hardware implementation compares favorably to the tech-
niques that have been presented in the literature. Application of the proposed scheme for
the two-pattern testing of ROM modules revealed that the testing of small-to-medium size
ROMs is completed within reasonable time and with negligible hardware overhead.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In current integrated circuit technology, where highly complex chips have low accessibility of internal nodes, traditional
testing becomes costly and ineffective. Built-In Self Test (BIST) techniques have been utilized as a powerful alternative to
external testing. BIST techniques employ on-chip test generation and response verification, reducing the need for expensive
external testing equipment. Furthermore, using BIST at-speed testing can be achieved which, in turn, increases the quality of
the delivered integrated circuits [1–4].

Pattern generators utilized in BIST techniques are commonly discerned into one-pattern and two-pattern. One-pattern
generators target the detection of combinational (i.e. stuck-at) faults. One-pattern generators can be designed using Linear
Feedback Shift Registers (LFSRs) [5], Cellular Automata (CA) [6], or Accumulators [7].

However, it has been proved that many failure mechanisms that appear in CMOS circuits can alter the behavior of a com-
binational circuit under test into a sequential one [8]. Furthermore, increasing performance requirements emphasize the
need to operate digital circuits at their highest possible speeds. This motivates testing for the correct temporal behavior,
commonly known as delay testing [1,2]. The detection of these types of faults requires two-pattern tests. Therefore, BIST
two-pattern generators have been proposed during the last years [9–26].

Arithmetic two-pattern generators exploit arithmetic modules (e.g. datapaths, counters, etc.) that exist in modern gen-
eral-purpose microprocessors or digital signal processors in order to generate test patterns for one or more modules in
the circuit. The utilization of existing modules for BIST purposes is favored by low hardware overhead, low impact on the
circuit normal operating speed and the fact that the modules used for BIST purposes are exercised. Therefore, faults existing
in the arithmetic modules can be detected, and the need for further testing of the modules is eliminated. Two-pattern gen-
eration based on accumulators has been proposed in [24,25].
. All rights reserved.
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In this paper an effective Arithmetic two-Pattern Test BIST generator (hereafter referred to as APT) is presented. The
proposed generator can generate all two-pattern tests and is based on an accumulating structure whose inputs are driven
by a binary counter or a Linear Feedback Shift Register (LFSR). The accumulating structure is composed of a controlled
binary/1’s-complement adder and a register. The presented scheme compares favorably to techniques that have been
proposed in the open literature. Application of the proposed scheme for the two-pattern testing of ROM modules reveals
that the testing of small-to-medium size ROMs is completed within acceptable time limits with negligible hardware
overhead.

The paper is organized as follows. In Section 2 we present the proposed generator based on an accumulating structure
whose inputs are driven by the outputs of a counter. In Section 3 an implementation of the proposed scheme based on a
parallel-prefix adder with fast carry input processing, as well as the implementation of the scheme when the inputs of
the accumulating structure are fed by an LFSR are given. In Section 4 the proposed two-pattern generator is compared with
the techniques that have been proposed to date. In Section 5 we study the application of the proposed scheme for two-
pattern testing of ROM modules; we conclude the work in Section 6.

2. Proposed algorithm

In the following, let n be the number of bits of the vectors to be generated. We will use N to represent 2n (N = 2n).

Definition 1. A Sequence(V,N) is a sequence of N vectors V0, V1, . . . , VN�1, where
V0 ¼ V ;

V1 ¼ ððV0 � 1þ 1Þ mod ðN � 1ÞÞ þ 1

..

.

Vk ¼ ððVk�1 � 1þ kÞ mod ðN � 1ÞÞ þ 1; for k ¼ 2; 3; . . . ; N � 2 and
VN�1 ¼ ðVN�2 þ N � 1Þ mod N:
Example 1. The Sequence(6,8) is presented in Table 1. In this table, the pattern 6 is the first pattern of the sequence; in the 6
cycles to follow, the patterns 1, 2, 3, 4, 5, 6 (first column) are added modulo 7, therefore the sequence 7, 2, 5, 2, 7, 6 is gen-
erated; during the last (seventh) cycle, 7 is added modulo 8 giving 5 as result.

The proposed APT algorithm is presented in Fig. 1 in pseudocode. The algorithm Sequence(V,N) generates a Sequence(V,N)
as given by Definition 1. APT algorithm operates in two phases, namely Phases 1 and 2; during Phase 1, N Sequences are gen-
erated; Phase 1 is completed when the zero pattern is generated. During Phase 2 all transitions to and from the all zero pat-
tern are generated. It should be noted that during Phase 1 the zero pattern is generated at the last step and it is not generated
during any previous cycle. This is proved formally in Lemma 1.

The APT(n) algorithm in a more detailed C-like notation is given in Fig. 2. During Phase 1 the consecutive vectors Vk,
(k = 1, 2, . . . , N�2) of Sequence(N�1,N) are generated. Then, a vector V (i.e. N�2) is generated and a Sequence(N�2,N) com-
mences. This is repeated for V = N�2, N�3, . . . , 1. At the end of the generation of all Sequence(V,N) the all-zero vector is
reached as the last pattern of a Sequence(1,N). In Phase 2 of APT(n) all transitions to and from the all-zero vector are gen-
erated. This is achieved by setting V to the all-zero vector every second step and adding to it the values of k in the next
step.

The vectors produced by the APT algorithm for n = 3 are given in column ACC of Tables 2 (for Phase 1) and 3 (for Phase 2).
The APT(n) algorithm generates all n-bit pairs of patterns. This claim is proved in Theorem 1. The following Lemmas are

used in the proof of Theorem 1; from Tables 2 and 3, it is trivial to confirm that Lemmas 1–3 hold for the case n = 3.

Lemma 1. The all-zero vector is not included in the vectors of any Sequence(V,N) for V > 1; it is only generated at the end of
the Sequence(1,N).
Table 1
Sequence(6, 8).

K Sequence(6,8) Comment

6 Addition modulo 7
1 7
2 2
3 5
4 2
5 7
6 6
7 5 Addition modulo 8



algorithm APT 
Phase1: 
   V = N-1; 
do  
  V = Sequence(V,N); 
until V=0; 

Phase2: 
   for i=1 to N-1 
     generate pair (0,i) and pair (i,0); 

Sequence(V,N) 
 next = V; 
 for k = 1 to N-2 
 {if next + k < N then next = n+k else next = (next + k) mod (N-1);} 
 next = (next + N-1) mod N; 
return (next); 

Fig. 1. APT alogithm.
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int main() 
{ int k=1, k_prev, ACC=N-1; 
  printf("%d %d\n",k,ACC); 
  do { 
    do { 
      ACC = ACC+k<N? ACC+k: ACC+k-N+1;  
      k = inc(k);       
      printf("%d %d\n",k,ACC); 
    } while (k<N-1); 
    ACC = ACC+k<N? ACC + k: ACC+k-N;  
    k= inc(k); 
    printf("%d %d\n",k,ACC); 
  } while (!(ACC==0)); 
 do{ 
    ACC=ACC+k; k=inc(k);  
    printf("%d %d\n",k,ACC); 
    k_prev=k; 
    ACC=0; k=inc(k);  
    printf("%d %d\n",k,ACC); 
  } while (!((k_prev==N-1) && (ACC==0))); 
}

int inc(int k) {return(k<N-1 ? ++k : 1); } 

Fig. 2. The APT(n) algorithm in C-like notation.
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Proof. According to the definition of Sequence(V,N) the all-zero vector is not derived during the generation of vectors Vk for
k = 1, 2, 3, . . ., N�2. For any Sequence(V,N), VN�2 = (V + 1 + 2 + � � � + N�2) mod (N�1) = [V + (N�2) � (N�1)/2] mod (N�1) = V
(since (N�2) is divisible by 2). Therefore, VN�1 = (V + N�1) mod N = V�1 which is equal to zero only when V = 1. h
Lemma 2. In any Sequence(V,N), no identical pairs of vectors exist.
Proof. If two identical pairs were generated, the respective difference would be the same. However, this is not possible
according to the definition of Sequence(V,N). h
Lemma 3. In the Sequence(V,N), derived for V = N�1, . . . , 1, no identical vector pairs (Vk, Vk+1), for k = 1, 2, 3, . . . , N�2 are
generated.
Proof. Since the vectors are generated in the same order, if the same vector pair was generated, it would be generated at the
same position. This means that the two Sequences should have started from the same number, which contradicts to the
assumption. h

Lemma 3 implies that in the Sequence(V,N), derived for V = 1, 2, . . . , N�1, a vector pair (Vk,Vk+1), for k = 1, 2, . . ., N�2 is not
generated twice. However, it should be noted that the vector pair (VN�2,VN�1) of the Sequence(m,N) is equal to the vector pair
(VN�1,VN) of Sequence(m+1,N). For example, the vector pair (7,6) is derived both during the generation of the Sequence(7,8)
and the generation of the Sequence(6,8).



Table 2
Sequences of APT(3). Bold fonts indicate the actual sequence applied to the inputs of the CUT.

Cycle # k ACC

1 7 Sequence(7,8)
1 2 1
2 3 3
3 4 6
4 5 3
5 6 1
6 7 7
7 1 6 Sequence(6,8)
8 2 7
9 3 2

10 4 5
11 5 2
12 6 7
13 7 6
14 1 5 Sequence(5,8)
15 2 6
16 3 1
17 4 4
18 5 1
19 6 6
20 7 5
21 1 4 Sequence(4,8)
22 2 5
23 3 7
24 4 3
25 5 7
26 6 5
27 7 4
28 1 3 Sequence(3,8)
29 2 4
30 3 6
31 4 2
32 5 6
33 6 4
34 7 3
35 1 2 Sequence(2,8)
36 2 3
37 3 5
38 4 1
39 5 5
40 6 3
41 7 2
42 1 1 Sequence(1,8)
43 2 2
44 3 4
45 4 7
46 5 4
47 6 2
48 7 1
49 1 0
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Theorem 1. The APT(n) algorithm generates all n-bit two-pattern pairs.
Proof. The APT(n) algorithm comprises two phases. During Phase 1, (N�1) Sequence(V,N) are generated, resulting into a
total of (N�2) � (N�1) = N � (N�1)�2 � (N�1) distinct pairs. On the other hand, the number of pairs excluding the transi-
tions to and from zero are N � (N�1)�2 � (N�1). The two numbers are equal. Therefore, it must be shown that the
(N�1) � (N�2) pairs generated during the application of the first (N�2) steps of each sequence are distinct. This is proved
as follows.

The all-zero vector is not included in the Sequences, except at the end of the Sequence(1,N) (Lemma 1). In any Sequence,
no two identical vector pairs are generated (Lemma 2). During the generation of the different Sequence(V,N) no two identical
vector pairs exist (Lemma 3). Therefore, the derived (N�1) � (N�2) vector pairs are distinct.

In Phase 2 the APT(n) algorithm generates all transitions to and from the all-zero vector. This is proved as follows. Since in
every second step V is set to the all-zero value and k is added to it in the next step, all transitions from zero to the vectors V
for V = 2k + 1 and vice versa are generated in the first 2n + 1 clock cycles. At the (2n + 1)-th cycle, the value of k is set to 1. In
the following 2n steps, all transitions from the all-zero vector to V, for V = 2 � k and vice versa are generated. h



Table 3
Patterns generated during Phase 2 of the APT(3) algorithm. Bold fonts used to emphasize the zero values generated during phase 2 of the APT(3) algorithm.

Cycle # k ACC

49 1 0
50 2 1
51 3 0
52 4 3
53 5 0
54 6 5
55 7 0
56 1 7
57 2 0
58 3 2
59 4 0
60 5 4
61 6 0
62 7 6
63 1 0
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3. Hardware implementation

The block diagram of the hardware implementation of the proposed scheme is given in Fig. 3. It is based on an accumu-
lating structure and a counter. The accumulating structure is composed of a controlled binary/1’s complement adder and a
register.

The APT(n) algorithm is implemented by the structure shown in Fig. 3 as follows. In Phase 1 of the algorithm the signal
INIT is activated setting the Register to value N�1 (all ones), and the counter to state 1 (CNT = 1). Then, the accumulating
structure performs N�2 additions modulo (N�1) (or, equivalently, 1’s complement additions) of the consecutive outputs
of the counter to the initial value (N�1) of the register. Therefore, vectors V1, V2, . . . , VN�2 of the APT(n) algorithm are gen-
erated at the REG output of the proposed generator. When the counter reaches the value N�1, the controlled adder is dic-
tated by the activation of the signal CNT_N�1 of the control module to perform a binary (modulo N) addition to generate
vector VN�1.

When all Sequence(V,N) for V = N�1, N�2, . . . , 1 have been generated, at the end of the Sequence(1,N), the output of the
adder becomes zero, Z = 1, (Z is the Zero signal of the datapath), and CNT = N�1. This condition initiates Phase 2. In this phase
the register is dictated by the REG_reset signal of the control module to become zero every second clock cycle.

The operation of the proposed architecture is further exemplified for n = 3 in Table 4. In Table 4, Phase 1 spans cycles 1–
48, while Phase 2 spans the remaining cycles. The column CNT contains the outputs of the counter, which repeats through
the sequence 1, 2, . . . , 7, 1, 2, . . . , 7. The column SUM contains the sum of the respective values of ACC and CNT. It is trivial to
note that columns CNT and REG in Table 4 are identical to the columns k and ACC in Tables 2 and 3.
3.1. Design of the controlled binary/1’s complement adder

For the implementation of the accumulating structure, we should note that a trivial way to implement the 1’s comple-
ment addition is to connect the carry output of an n-bit adder to its carry input. A problem arising from this end-around carry
Fig. 3. Architecture of the proposed two pattern generator.



Table 4
Patterns generated by the generator of Fig. 3 for n = 3. Bold fonts indicate the actual sequence applied to the inputs of the CUT.

Cycle # CNT SUM REG

1 1 7
1 2 3 1
2 3 6 3
3 4 3 6
4 5 1 3
5 6 7 1
6 7 6 7
7 1 7 6
8 2 2 7
9 3 5 2

10 4 2 5
11 5 7 2
12 6 6 7
13 7 5 6
14 1 6 5
15 2 1 6
16 3 4 1
17 4 1 4
18 5 6 1
19 6 5 6
20 7 4 5
21 1 5 4
22 2 7 5
23 3 3 7
24 4 7 3
25 5 5 7
26 6 4 5
27 7 3 4
28 1 4 3
29 2 6 4
30 3 2 6
31 4 6 2
32 5 4 6
33 6 3 4
34 7 2 3
35 1 3 2
36 2 5 3
37 3 1 5
38 4 5 1
39 5 3 5
40 6 2 3
41 7 1 2
42 1 2 1
43 2 4 2
44 3 7 4
45 4 4 7
46 5 2 4
47 6 1 2
48 7 0 1
49 1 1 0
50 2 3 1
51 3 3 0
52 4 7 3
53 5 5 0
54 6 3 5
55 7 7 0
56 1 0 7
57 2 2 0
58 3 5 2
59 4 4 0
60 5 1 4
61 6 6 0
62 7 5 6
63 1 1 0
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connection is that under certain circumstances the output of the adder may oscillate [27]. Efficient oscillation-free 1’s com-
plement adders can be derived from parallel-prefix adders using fast input carry processing [28,29]. Since we use this adder
architecture for the implementation of controlled binary/1’s complement adder, in the following we briefly review its design.
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Let A = an�1an�2. . .a0 and B = bn�1bn�2. . .b0 be the two n-bit operands to be added, c�1 the carry input and S = sn�1sn�2. . .s0

be their sum. A parallel-prefix adder with fast input carry processing can be considered as a four-stage circuit. The prepro-
cessing stage computes the carry-generate/propagate bits gi = ai � bi, pi = ai � bi, for 0 6 i 6 n�1, (� denotes the exclusive-OR
operation). The second stage computes the group generate/propagate terms (Gi,Pi), for 0 6 i 6 n�1. The Gi, Pi terms are for-
mally defined as (Gi,Pi) = (gi,pi) o (gi�1,pi�1) o � � � o (g1,p1) o (g0, p0), where o is the prefix operator defined as (gm, pm) o (gk,
pk) = (gm + pm � gk, pm � pk). The third stage performs the computation of the carries according to the relation ci = Gi + Pi � c�1.
The fourth stage computes the sum bits according to the relation si = pi � ci�1.

The controlled binary/1’s complement adder utilized by the proposed scheme is given in Fig. 4, where the square (h)
nodes implement the functions gi, pi, while the diamond (}) nodes implement function si. The gray cycle nodes implement
the functions ci = Gi + Pi � c�1. The adder performs either 1’s complement addition (when CNT_N�1 = 0) or binary addition
with no carry (when CNT_N�1 = 1).

3.2. Design of the control module

The design of the control module is presented in Fig. 5. Initially the two flip-flops are set to zero. When the output of the
adder is zero (Z = 1) and CNT_N�1 is enabled, the control module proceeds in a state where the REG_reset signal is driven by
the divided-by-two clock signal clk/2. The Zero signal (Z) is enabled when the output of the adder is equal to the all-zero
vector and is available in the datapath of all processors as it is the signal that drives the zero flag.

3.3. LFSR-driven implementation

The proposed BIST scheme can be implemented by driving the inputs of the accumulating structure with the outputs of a
maximal cycle Linear Feedback Shift Register (LFSR) instead of a counter. LFSRs are commonly utilized circuits and can be
easily implemented by modifying existing registers.

An n-stage LFSR consists of n memory elements (flip-flops) called stages, connected via using a small number of XOR gates.
An LFSR that can generate all 2n�1 n-bit non-zero patterns (if it is initialized to a non-zero value) is called a maximal cycle LFSR.
A maximal cycle 3-stage LFSR is presented in Fig. 6. An extensive discussion on the design of LFSR structures can be found in [1].

Definition 2. We define as an LSequence(V,N), the sequence of vectors starting from V and performing N�2 consecutive
additions of k modulo N�1, for discrete values of k for k = 1, 2, 3, . . ., N�2 (irrespective of the order of the values of k) and a
final addition of N�1 modulo N.

It is trivial to show that Theorem 1 holds in case the inputs of the accumulator are driven by the outputs of an LFSR in-
stead of a counter; indeed an Lsequence and a Sequence have the same output effect, since it is easy to generate the LFSR
output sequence in such way that the N�1 value is generated as the last value of the sequence. For example, for the sequence
generated by the LFSR of Fig. 6 {011,101,010,001,100,110,111} = {3,5,2,1,4,6,7} the Lsequence(k,N) for the various values
of k are presented in Table 5.

4. Comparisons

In this section we compare the proposed scheme with the ones that have been proposed in the literature and can generate
all two-pattern tests. Such techniques have been proposed by Starke [9], Vuksic and Fuchs [10] and Chen and Gupta [11].
Parallel-Prefix
Unit

CNT_N-1

Gn-1

a0 b0an-2 bn-2an-1 bn-1

c-1

c0cn-3cn-2cout

s0sn-2sn-1

Gn-1,Pn-1 Gn-2,Pn-2 G0,P0

Fig. 4. Proposed controlled parallel-prefix adder.
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Accumulator-based generators have been also proposed in [24,25]. In the sequel, all k-input simple logic gates (AND, OR,
NAND and NOR) are denoted as GT(k).

Starke [9] has proposed Pseudo Exhaustive Transition Testing (PETT). In PETT, a Non-Linear Feedback Shift Register (NFSR)
with 2n stages is used for the generation of n-bit patterns for an n-bit CUT (Circuit Under Test). The time required for the
completion of the test is 22n clock cycles. Assuming that before the insertion of the BIST circuit an n-stage register exists
at the inputs of the CUT, PETT uses n additional flip-flops (DFF) for the formation of the 2n-stage NFSR. Furthermore, n
2-to-1 multiplexers (MUX21) are inserted to the inputs of the register flip-flops, and a simple logic gate with 2n inputs is
included to implement the non-linear feedback operation. Therefore, the hardware overhead (HO) of PETT is given by the
following formula:
Table 5
Lsequen

LFSR

3
5
2
1
4
6
7

HO½9�ðnÞ ¼ n� DFFþ GTð2� nÞ þ n�MUX21
Vuksic and Fuchs [10] proved that a Multiple Input Shift Register (MISR) can generate all transitions if it receives all the 2n

input combinations. The time required for the completion of the test is 2n � (2n�1). Assuming the existence of n flip-fops (n
stage register) at the inputs of the CUT, the BIST circuitry requires the insertion of n XOR gates and n flip-flops (to generate
the 2n input combinations). Therefore, the hardware overhead of BIST is given by:
HO½10�ðnÞ ¼ n� DFFþ n� XOR þ n�MUX21
Chen and Gupta [11] investigated how an exhaustive two-pattern test can be generated using either an LFSR or a Cellular
Automaton (CA). Their results show that for an n-input CUT, an LFSR or a CA with at least 2n stages is required. In both cases,
the time required to complete the test is 22n clock cycles. Assuming the existence of n flip-flops at the inputs of the CUT, the
implementation of the 2n stage LFSR requires n additional flip-flops. Therefore, the hardware overhead is given by:
ce(k,N) for k = 7, 6, . . . , 1 and sequence generated by the LFSR {3,5,2,1,4,6,7}.

Lsequence starting from

7 6 5 4 3 2 1

3 2 1 7 6 5 4
1 7 6 5 4 3 2
3 2 1 7 6 5 4
4 3 2 1 7 6 5
1 7 6 5 4 3 2
7 6 5 4 3 2 1
6 5 4 3 2 1 0



Table 6
Compar

[9]
[10]

[11]

[24]

[25]
APT

406 I. Voyiatzis et al. / Computers and Electrical Engineering 39 (2013) 398–409
HO½11�-LFSRðnÞ ¼ n� DFFþ n�MUX21
The CA-version of the technique requires n flip-flops (for the formation of the 2n-stage CA) and a number of XOR gates for
the formation of the CA rules. In order to calculate the number of XOR gates, we assume that half of the stages implement
rule 90, while the others implement rule 150. This assumption is justified since these two rules are the most commonly used
in Cellular Automata applications [6]. Rule 90 requires one 2-input XOR gate, while Rule 150 requires two 2-input XOR gates.
Therefore, the hardware overhead of the technique is:
HO½11�-CAðnÞ ¼ n� DFFþ 1:5� n� XOR þ n�MUX21
In the hardware overhead estimations that follow, the existence of an n-stage accumulator and an n-stage counter or LFSR
is assumed. The technique presented in [24], utilizes a carry-free accumulator whose inputs are driven by either a counter or
an LFSR. In order to implement this technique a control module (composed of six 2-input gates, 2 flip-flops and two n-input
logic gates) is required. Therefore, the hardware overhead is given by the following formula:
HO½24�ðnÞ ¼ 2� GTðnÞ þ 2� DFFþ 6� GTð2Þ þ n�MUX21
The implementation of the technique proposed in [25] for exhaustive two-pattern generation requires a detect module
(two n-input gates) and a control module (composed of 3 flip-flops and 8 two-input gates). Therefore, the hardware overhead
is given by:
HO½25�ðnÞ ¼ 2� GTðnÞ þ 3� DFFþ 18� GTð2Þ þ n�MUX21
In order to implement the proposed generator a control module (Fig. 5), composed of one logic gate with n inputs, two 2-
inputs logic gates and two flip-flops are required. Therefore, the hardware overhead is given by:
HOAPTðnÞ ¼ 2� DFFþ GTðnÞ þ 2� GTð2Þ þ n�MUX21
In Table 6, comparison data are given. For each one of the techniques, the module that generates the two-pattern test is
presented in the second column. The existing module(s) utilized by the technique are presented in the third column. In the
fourth column the hardware overhead (in gate equivalents) is presented.

For our calculations the following have been taken into consideration. An n-input gate, denoted here as GT(n), is equiv-
alent to n�1 gates; a 2-input XOR gate or a 2-to-1 MUX is equivalent to 4 gates, while an edge triggered D flip-flop with reset
or preset input is equivalent to 8 gates.

In order to perform a unified quantitative comparison of the techniques, we define the effectiveness metric in a way sim-
ilar to [24,25] as follows. Let G can be any one of the techniques proposed in [9–11,24,25] and the proposed here. Let HOn(G)
denote the hardware overhead of G and tn(G) denote the time required by G to generate the n-bit pairs. Since the hardware
overhead is of the order O(n), we define the effective hardware overhead, e_hon(G) as a metric of the hardware overhead as
follows.
e HOnðGÞ ¼
HOnðGÞ

n

Similarly, since the time in clock cycles is of the order O(22n) we define the effective time, e_tn(G) as follows:
e tnðGÞ ¼
logðtnðGÞÞ

2n
We integrate the above two metrics into the effectiveness En(G):
EnðGÞ ¼
1

e HOnðGÞ � e tnðGÞ
¼ 1

HOnðGÞ
n � logðtnðGÞÞ

2n

¼ 2n2

HOnðGÞ � logðtnðGÞÞ
ison of two-pattern generation techniques.

TPG based on Existing modules h/w (gates) Time (cycles)

NFSR(2n) Reg(n) 14 � n 2n � 2n

MISR(n) + Cnt(n) Reg(n) 16 � n 2n � (2n�1)
MISR(n) 12 � n

LFSR(2n) Reg(n) 12 � n 2n � 2n

CA(2n) Reg(n) 18 � n
Acc(n) + LFSR(n) Acc(n) + Reg(n) 6 � n + 22 2n � (2n�1)
Acc(n) + Cnt(n) Acc(n) + Cnt(n)
Acc(n) + Cnt(n) Acc(n) + Cnt(n) 6 � n + 32 2n � (2n�1)
Acc(n) + Cnt(n) Acc(n) + Cnt(n) 5 � n + 18 2n � 2n

LFSR 5 � n + 18 2n � 2n



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

12 14 16 18 20 22 24 25 26 27 28 29 30
n

En
(G
)

[9]

[10]-1

[10]-2

[11]-1

[11]-2

[24]

[25]

APT

Fig. 7. Comparison of two-pattern generation schemes (En(G)) for various values of the CUT inputs.

I. Voyiatzis et al. / Computers and Electrical Engineering 39 (2013) 398–409 407
Since it is desirable that both HOn(G) and tn(G) be as low as possible, the higher the value of En(G), the more effective is G. In
Fig. 7 En(G) is presented for each one of the techniques for various values of the inputs of the CUT. From Fig. 7 it is derived
that APT is the most effective of the techniques that have been presented in the literature for the generation of vector pairs,
with respect to the hardware overhead and the time required to complete the test. It should be noted that, with respect to
the second scheme (the one proposed in [24]) the increase of the effectiveness ranges from 21% to 26% for the values of n
under consideration, and increases with the value of n.

In order to further validate the proposed scheme, we have implemented and performed simulations of the schemes fol-
lowing. The schemes were implemented for generators with 4, 8, and 16 stages. The implementation and simulation results
for the modules exceeding the existing modules are presented in Table 7. In Table 7 we have group d the results in three in
the first column we present the number of stages for the experiment; in the second and third columns we present the power
(in watts � 10�4) and area (in lm2) of the scheme proposed in [24], while in the fourth and fifth columns the respective data
for the proposed scheme are presented. In the sixth column we present the reduction in the Power � Area metric achieved by
the proposed scheme.

5. Case study: Two-pattern testing of ROM modules

Read-Only Memories (ROMs) are commonly embedded into current VLSI chips and constitute critical parts in complex
circuits; therefore high-quality testing is required. Typical chips contain a large number of embedded small-to-medium
sized memories and very few large blocks. Practical testing schemes for ROMs use exhaustive testing [30]. This kind of
Table 7
Implementation results of the schemes.

n [9] [10]-MISR [11]-LFSR [11]-CA [24] [25] APT

Power (watts � 10�4)
4 5228 2948 2868 2868 1841 2893 1204
8 5708 9121 5680 1014 1841 2942 1126
16 1136 16,680 5684 1621 1846 2950 1132
32 2272 33,050 5684 3266 1846 2879 1126

Area (lm2)
4 768 792 727 792 504 695 417
8 1496 1650 1427 1630 565 764 443
16 2963 3276 2825 3256 687 894 512
32 5911 6553 5647 6533 951 1166 638

Power � area
4 4,017,195 2,337,174 2,087,044 2,273,750 928,048 2,011,214 502,188
8 8,539,739 15,055,123 8,105,360 1,653,124 1,040,349 2,248,571 498,931
16 3,366,877 54,658,692 16,060,710 5,278,787 1,268,387 2,638,480 579,810
32 13,430,474 216,599,785 32,098,116 21,338,084 1,756,100 3,358,929 718,726



Table 8
Percentage hardware overhead and test time vs. ROM size.

#Words (K) Word width Test time (s)

8 (%) 16 (%) 32 (%) 64 (%)

8 0.48 0.24 0.12 0.06 0.33
16 0.26 0.13 0.06 0.03 1.34
20 0.22 0.11 0.05 0.03 2.09
32 0.14 0.07 0.03 0.02 5.37
40 0.11 0.05 0.03 0.01 8.39
64 0.07 0.04 0.02 0.01 21.48
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testing is enough to cover all logically testable (i.e. stuck-at) faults [30]. Consequently, when delay and/or stuck-open faults
are considered, exhaustive two-pattern testing needs to be deployed to ensure absence of such faults.

In order to evaluate the applicability of APT, we shall calculate the overhead of the BIST hardware over the overhead of the
ROM. For the calculations we have considered that a ROM bit is equivalent to 1/4 gates, as has been also considered in
[31,32].

Results are presented in Table 8. In the first column of Table 8 we present the ROM size (number of words); in the second
through the fifth column we present the hardware overhead of the proposed scheme over the hardware overhead of the
ROM. In the last column of Table 8 we present the test time (in seconds) required to complete the two-pattern test for each
memory size. For the calculations, a 200 MHz clock has been considered.

From Table 8 it is derived that the hardware overhead of the proposed scheme is practically negligible (<0.5%). Further-
more, the two-pattern test completes within less than 22 s even for medium-size ROMs. Therefore, taking into account that
typical chips contain a large number of embedded small-to-medium sized memories and very few large blocks, we can con-
clude that the proposed scheme may constitute a useful component in the arsenal of BIST schemes for testing ROMs for faults
that cannot be detected with tests that target the stuck-at fault model.
6. Conclusions

A novel algorithm for the generation of two-pattern tests is presented. The proposed algorithm can be implemented in
hardware utilizing modules existing in data path circuitry, and compares favorably to techniques already presented in
the open literature with respect to the hardware and the test time from 21% to 26%. Furthermore, implementations and
experiments carried out revealed that control module of the proposed scheme presents a significant decrease (over 45%) over
the other scheme with respect to the Area � Power metric. A case study on the two-pattern testing of ROM modules revealed
that for small-to-medium size ROMs the two-pattern testing can complete within reasonable time with negligible (less than
0.5%) hardware overhead.
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