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SNPs (Single Nucleotide Polymorphisms) include millions of changes in human genome, and therefore,
are promising tools for disease-gene association studies. However, this kind of studies is constrained
by the high expense of genotyping millions of SNPs. For this reason, it is required to obtain a suitable sub-
set of SNPs to accurately represent the rest of SNPs. For this purpose, many methods have been developed
to select a convenient subset of tag SNPs, but all of them only provide low prediction accuracy. In the
present study, a brand new method is developed and introduced as GA-SVM with parameter optimiza-
tion. This method benefits from support vector machine (SVM) and genetic algorithm (GA) to predict
SNPs and to select tag SNPs, respectively. Furthermore, it also uses particle swarm optimization (PSO)
algorithm to optimize C and y parameters of support vector machine. It is experimentally tested on a
wide range of datasets, and the obtained results demonstrate that this method can provide better predic-

tion accuracy in identifying tag SNPs compared to other methods at present.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

One of the important study subjects about human genome is the
investigation of genetic variants related to complex diseases. Most of
these genome-wide association (GWA) studies [1,2] are aimed to
determine genetic variants possibly related to complex diseases.
Genetic variants mostly consist of SNPs (Single Nucleotide Polymor-
phisms), and human genome is estimated to include around 10 mil-
lion SNPs [3]. In this regard, it is generally preferred to use SNPs in
GWA studies [4,5]. The number of individuals and SNPs are quite
effective on the statistical significance of a GWA study [6]. How-
ever, it is still very expensive and time-consuming to genotype all
the SNPs in a large population found in the candidate area for
large-scale GWA studies [7-9]. Therefore, a subset of SNPs should
be selected to predict the rest of SNPs with an acceptable error limit.
In this subset, a single SNP is called a tag SNP. In addition, it is quite
important to determine a minimum subset of tag SNPs to predict
the rest of SNPs with maximum accuracy [7-10].

There are different methods developed to select tag SNPs in re-
cent years [7-29]. These can be categorized into three main groups
as block-based, linkage disequilibrium (LD)-based and block-free
methods. Among them, block-based methods are mainly estab-
lished on the block structure of human genome [30,31]. These
methods are based on the fact that human genome can be divided
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into discrete blocks, and small sets of common haplotypes in each
block are shared by a specific population. In this respect, these
methods aim to find a subset of SNPs in order to distinguish all
of the shared haplotypes [11-15]. Accordingly, a human genome
is divided into haplotype blocks in the first place, and later, a sub-
set of tag SNPs is selected for each block in the second place. How-
ever, it is not always possible to determine the blocks accurately,
which is the main problem of this method, and it is still under dis-
cussion in which way to define these blocks [16]. Furthermore, in-
ter-block correlations are ignored during the selection of tag SNPs,
which is performed only by the local correlation between the
markers of each block [16].

Another type of tag SNP selection methods is LD-based methods
which consider the relation between SNP pairs (linkage disequilib-
rium). The main aim of these methods is to choose a set of tag SNPs
highly related to each SNP on a definite haplotype [23-25,27-29].
However, it is not easy to decrease the number of tag SNPs on loci
with low LD.

On the other hand, many block-free methods were introduced
recently by investigators [7-10,16-22]. These methods consider
tag SNPs as a subset of all SNPs to re-build the rest of SNPs. Con-
trary to the block-based methods, block division and limited hap-
lotype diversity are not used in these methods. Instead, weaker
correlations between adjacent blocks are preferred [18,19]. Lin
and Altman [17] developed a method (Eigen2htSNP) to predict a
tagged SNP by using a tag SNP with the highest correlation with
the tagged SNP. However, the prediction accuracy of Eigen2htSNP
method is low due to the slightly correlated SNPs used in SNP
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prediction. Similarly, Halperin et al. [7] suggested another method
(STAMPA) to select a subset of tag SNPs. This method selects a min-
imum of two tag SNPs which could sometimes give worse results
than a randomly selected subset of tag SNPs [9]. Another method
for selecting a tag SNPs was proposed by Lee and Shatkay [8],
which was called BNTagger method considering conditional inde-
pendency among SNPs. The aim of this method is to select inde-
pendent but highly predictive SNPs through Bayesian networks.
In this method, the algorithm does not use the number of tag SNPs
to be selected as input variable, and instead, tag SNPs are selected
according to previously determined threshold value used as input
in algorithm. However, this is a very time-consuming method [9].
On the other hand, He and Zelikovsky [10] suggested two new
methods for SNP prediction based on Multiple Linear Regression
(MLR-Tagging) and Support Vector Machine (SVM/STSA), of which
SVM/STSA is considered more effective, yet it is still very time-con-
suming due to its production of hereditary subset of tag SNPs [26]
as this is not always useful. Yang et al. [9] proposed a new method
(BPSO), which is a binary version of particle swarm optimization
algorithm. However, this method has the same drawbacks of
STAMPA as both methods share the same prediction algorithm.
In the recent period, Lin and Leu [21] has developed a hybrid meth-
od known as Particle Swarm Optimization-Support Vector Ma-
chine (PSO-SVM). This method combines PSO and SVM through
parameter optimization and property choice. PSO and SVM are
used for selection of tag SNPs and for prediction of the rest of SNPs,
respectively. However, prediction accuracy is quite poor while the
number of tag SNPs is small. Mahdevar et al. [22] suggested a heu-
ristic method (GTagger) using genetic algorithms. This method uses
correlation and Shannon entropy to calculate fitness function, but
its prediction accuracy is low.

Diverse subsets of tag SNPs could be obtained in random selec-
tion of tag SNPs by a method using support vector machine (SVM)
[32,33] as SNPs prediction model in the search space [6]. It is
well-known that genetic algorithms (GAs) are able to scan the points
in the search space quite well through their genetic operators [34-
36]. From this regard, this study suggests a new approach to select
tag SNPs and to predict non-tag SNPs by using the genetic algo-
rithm and the support vector machine, respectively. In addition,
particle swarm optimization (PSO) algorithm is used in the study
to optimize C and y parameters of support vector machine. This ap-
proach is called as the GA-SVM method with parameter optimization.
“Leave-one-out cross-validation” (LOOCV) method is used to evalu-
ate the prediction accuracy of the algorithm in this approach. Exper-
imental results on many datasets demonstrate that the suggested
approach is able to identify tag SNPs with significantly higher pre-
diction accuracy than other methods at present.

In the rest of the paper, Section 2 explains the selection problem
of tag SNPs, Section 3 presents the method used for selection prob-
lem of tag SNPs, Section 4 gives the experimental datasets used in
the study, Section 5 presents the experimental results, and Sec-
tion 6 concludes the paper.

2. The selection problem of tag SNPs

A diploid organism contains two non-identical copies of each
chromosome and a set of SNPs on each of these copies is named as
haplotype, while the data including the combination of two haplo-
type is named as genotype [1]. Each haplotype gives allele informa-
tion of adjacent SNPs on a given chromosome, and each genotype
represents the combined allele information of SNPs on a certain pair
of homologous chromosomes (Supplementary Fig. 1) [6].

The most frequently observed nucleotide of a SNP in a given
population is referred to as major allele, while others are known
as minor allele. For bi-allelic SNPs, haplotypes can be represented

as a string of symbols {0, 1}, where 0 and 1 stand for major and
minor alleles, respectively. Within a genotype, SNPs are accepted
homozygous when both alleles are the same, and heterozygous
when both alleles are different. Therefore, a genotype can also be
represented with any of these numbers {0, 1, and 2}, where 0 indi-
cates both alleles of SNP are major homozygous, while 1 stands for
minor homozygous, and 2 stands for heterozygous (0/1, 1/0) (Supple-
mentary Fig. 2) [6].

A haplotype matrix H is used to determine a suitable subset of
tag SNPs to predict the rest of SNPs. Here, each row represents a
definite haplotype h;, i{1,2,...,m} and each column indicates a def-
inite SNP;, j € {1,2,...,n}. The main problem is to detect a conve-
nient subset T={tyt,...,tx} of tag SNPs, which should be
minimum of all choices, but enables the prediction of rest of SNPs
by a higher accuracy.

3. The GA-SVM method with parameter optimization

In the present study, a new hybrid method is suggested increas-
ing the prediction accuracy of SNPs classification. This method uses
genetic algorithm to select tag SNPs, and support vector machine
to predict the rest of SNPs. C and y parameters of support vector
machine are optimized by particle swarm optimization algorithm.
As mentioned above, this method is called as GA-SVM method
with parameter optimization.

Fig. 1 demonstrates this method which consists of modules to
perform the procedures including the formation of the initial popu-
lations, calculation of fitness value (fitness evaluation), finding pbest
values and gbest, calculating the particle speeds and updating their
locations, selection, crossover, mutation, and adjusting operations.

3.1. Selecting the tag SNPs by the genetic algorithm

3.1.1. The initial population for SNPs

The initial population of SNPs is represented with a binary ma-
trix where the chromosomes in the population are given in rows,
and SNPs are in columns. The input of algorithm is matrix H with
m rows and n columns where a certain haplotype and SNPs are rep-
resented in each row and column, respectively [10]. Each haplotype
in such a matrix is represented by an n-bit binary vector. Through
this matrix, genetic algorithm produces a matrix population of Pga
with n columns and N, rows where N, is the number of chromo-
somes in population randomly selected between 10 and 200
[37,38]. The p;; € {0,1} of the matrix Pg4 stands for the jth SNP for
the ith chromosome. 1 indicates that the relevant SNP is a tag
SNP, while 0 shows the necessity to predict the value of relevant
SNP. All the chromosomes share the same number of tag SNPs rep-
resented by Ny, while different chromosomes have different com-
binations of Ny SNPs from the n SNPs. For instance, a P;4 matrix
with n =15 SNPs and 5 chromosomes given in Fig. 2, there are 5 sets
of the size 5 that differ from each other by at least one tag SNPs.

Genetic algorithm is an iterative procedure to maintain a con-
stant population size in candidate solutions [39]. In each iteration
of this algorithm, three genetic operators (selection, crossover, and
mutation) are performed to create a new population (offspring).
Chromosomes of new population are assessed by using the fitness
function (Eq. (1)) shown in the subsequent section. With this eval-
uation, better new populations are detected as candidate solutions
[39].

3.1.2. The fitness evaluation

Leave-one-out cross validation (LOOCV) method is used for fit-
ness evaluation in the study [7-10,17,21,40]. In this method, the
jth haplotype is removed from the matrix H in the jth iteration,
and the tag SNPs are selected from the remaining haplotypes by
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Fig. 1. The flowchart of the GA-SVM algorithm with parameter optimization.

Chromosome 1 | 0 | 0 0] o 0 0o|ofo 0] o
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Fig. 2. Population matrix including 5 chromosomes and 15 SNPs. Each chromosome consists of 5 tag SNPs and 10 tagged SNPs.

using the GA. Subsequently, these tag SNPs are used to predict the
tagged SNPs (the rest of SNPs) present in the removed haplotype.
This process is repeated for all j = 1,2,...,m, i.e., until all haplotypes
in H are used as the validation data. The ratio of the number of
SNPs predicted accurately to the total number of predicted SNPs
gives the prediction accuracy (fitness value), which is calculated
with Eq. (1), where N, is the number of accurately predicted SNPs,
while N, is the number of all predicted SNPs.

PA = N/N,. (1)

3.1.3. The natural selection
Including every chromosome of a population in the selection
would not be much effective on the next generation; therefore,

chromosomes obtaining higher fitness values should survive,
while other chromosomes should be eliminated [41]. Natural
selection takes place in each iteration of algorithm. There are dif-
ferent selection methods in GA, including roulette wheel selection,
random selection, scaling selection, tournament selection, hierarchi-
cal selection, etc. Of these, roulette wheel selection method is used
in the present study as it is the most common method [42]. This
method looks like a cycling wheel in which each chromosome ob-
tains an area in parallel with its fitness. This method creates a set
A of cumulative probabilities of N, chromosomes in order and a
set B of N, numbers generated randomly in the range of 0 and
1. Subsequently, ¢;=min{a; € A: a; > b;} is selected for each num-
ber b; € B. Consequently, the new population set of C = {c;}{, is
created.
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3.1.4. The crossover operation

The crossover operation with Cg rate is performed on the new
population to improve the new population resulting from natural
selection. Chromosomes are randomly selected to apply crossover
operation in general. Additionally, the uniform crossover operator
is used in the present study to obtain offspring chromosomes from
parent chromosomes [43]. For this purpose, a crossover mask has
to be created with 0.5 mixing ratio [44], which is used to determine
the special bits of the parent chromosomes to crossover. In cross-
over mask, a 1-bit indicates SNPs related to bit to be crossed be-
tween both parents, while a 0-bit demonstrates the SNPs related
to bit that should not change. The crossover rate is set to Cg=0.9
in the present study [26,45]. Fig. 3 demonstrates a sample for uni-
form crossover operation implemented on chromosomes 1 and 3
(Fig. 2) in which the 3rd row is crossover mask produced by mixing
ratio of 0.5.

3.1.5. The mutation operation

The mutation operator is performed with a mutation rate My to
improve the population produced by crossover operation. For this
purpose, mutation operator modifies certain bits in the population.
A random number between 0 and 1 is produced for each bit-posi-
tion in chromosomes to determine which bits to mutate. When the
number is lower than Mg, relevant bits should be mutated through
change of every 0 bits to 1, and every 1 bits to 0 [26]. The mutation
rate is set to Mg =0.01 in the present study [26,45]. Fig. 4 repre-
sents mutation operation performed on SNPs for the chromosome
4 (Fig. 2).

3.1.6. Adjusting the number of tag SNPs

After crossover and mutation operations, the number of 1 bits
demonstrating the tag SNPs for chromosomes could be changed
[26]. Therefore, the number of tag SNPs for each chromosome
should be adjusted so that the number M4, of tag SNPs for each
chromosome can be equivalent to the number N given as input
for the GA-SVM algorithm with parameter optimization. There
are two methods in literature, suggested solving this problem
[9,22,26]. One of them is random search method, in which randomly
selected Mqg — Niqg tag SNPs are transformed into O if Myag > Nigg;
on the other hand, [22,26]; Nz — Mqg SNPs not selected yet are
transformed into 1 if Mg < Niqg in order to reach the desired num-
ber of tag SNPs. Unfortunately, random adjustment of the number
of tag SNPs for chromosomes results in diverse prediction accuracy
rates for different iterations [9]. The other method is local search
algorithm, in which the new chromosomes with higher prediction
accuracy are fixed in the adjustment process for the number of se-
lected tag SNPs in chromosomes [9]. The prediction accuracy is cal-
culated by the LOOCV method for each candidate chromosome.
However, prediction accuracy considerably changes from one iter-

ation to another in the random search method, which complicates
the selection of tag SNPs. In order to minimize the fluctuation of
the prediction accuracy, it is necessary to increase the number of
the iteration excessively. But in this case, the algorithm takes so
much time that the solution of many practical applications be-
comes impossible [35]. The LOOCV method, which is highly time-
consuming, is used in local search algorithm to find a new chromo-
some with the highest prediction accuracy [9]. Therefore, it is also
unpractical for many applications [40].

The comparison of experimental results of LOOCV and 10-fold
cross-validation methods reveals that the latter method works
approximately 10 times faster than the former one despite the fact
they produce the same results [6]. For this reason, 10-fold cross-
validation method is used in the local search algorithm [6].
Fig. 3represents the sample of tag SNPs in offspring 2,
marked Mg =4 times with 1’s. In Fig. 5, the values of tagged SNPs
are replaced from O to 1 in the offspring 2 by 11 candidate chromo-
somes one at a time. The new offspring 2 chromosome is chosen as
the candidate chromosome that has the best prediction accuracy.

After the modification of tag SNPs number, LOOCV method is
used to calculate the fitness value (prediction accuracy) for each
chromosome of the new population, and the chromosome with
the best fitness value is determined. This process is repeated by
N¢ € {20,21,...,200}, where N¢ signifies the number of required
generations (iterations) used by the algorithm as input. The chro-
mosome with the best fitness value within the set is returned as
a result of the generations.

3.2. Optimizing the SVM parameters (C and ) by the particle swarm
optimization

In this study, SVM is used to predict the values of the tagged
SNPs using the values of tag SNPs. In SVM classifier, radial basis
function (RBF) is used as the kernel function. The RBF kernel func-
tion requires that C and y should be set. yis an important parameter
to dominate the generalization ability of SVM by regulating the
amplitude of the RBF kernel function and C is a parameter control-
ling the trade off between maximizing the margin and minimizing
the training error [32,33]. It is not known beforehand which C and
y values are best for a given problem; therefore, some kind of
parameter researches should be performed [46]. For this purpose,
PSO algorithm is used in the study.

3.2.1. The initial population for SVM parameters

Initial population for SVM parameters is represented by a ma-
trix where the rows represent particles in population and the col-
umns represent SVM parameters, respectively. The PSO algorithm
forms a population matrix Ppso with two columns and N, rows.
The columns here represent C and y parameters and the rows

R R R - R 2 R - - T - R - R - R - R . T - R -
Chromosome 1[ 0 [ o [N o [ o [N o R o [ o[ o [H o [ o BN
Chromosome 3 [N 0 [N © [ o [ o BN o [ o[ o [N o[ o BN o]

CrossoverMask [ 1 [ o [oJaJ o[ aJtJolofJo]aJo[a]o]u1]

Offspring 1 0

Offspring 2| 0 | 0 0

o] oo [N o o [RRINEN ofofo]
[o [N o [ofoJo o ofo NN

Fig. 3. Uniform crossover operation on chromosomes 1 and 3.
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Fig. 5. The preparation of candidate chromosomes by replacing Os to 1s in offspring 2 one at a time.

represent N, number of particles. The number of rows in particle
matrix Ppso equals to that of the population matrix Pcs, formed
by GA. The entries p;; € [0,1] of the matrix Ppso represent the values
of C and y parameters for the ith particle. A population matrix is gi-
ven as an example in Fig. 6. As can be seen in this figure, population
matrix consisted of five particles and two parameters (C and 7).

3.2.2. The fitness evaluation

In this study, the fitness function calculated for GA is used as the
fitness function of PSO algorithm. The fitness value calculated for
each chromosome in population matrix Pg4 (the population matrix
for GA) is also used as the fitness value of the particle that is the
equivalent in population matrix Ppso (the population matrix for
PSO). For instance, if the calculated fitness value is 0.93 for the
chromosome 2 in Fig. 2, this value is also the fitness value of par-
ticle 2 in Fig. 6. As can be seen in Eq. (1), the fitness value (predic-
tion accuracy) is obtained as the ratio of the number of accurate
predicted SNPs (N¢) to the total number of predicted SNPs (N,).

C Y
Particle 1 | 0.08 0,3
Particle 2 0,1 0.35
Particle 3 0,05 0,06
Particle 4 | 0.7 83
Particle 5| 0.85 02

Fig. 6. Particle population matrix included 5 particles. Each particle consists of C
and 7y parameters.

3.2.3. Finding pbest values and gbest

In each iteration of PSO algorithm, every particle is updated
based on “the two best” values. The first one is the best fitness va-
lue that the particle finds until that time. Furthermore, this value is
kept in the memory for later use and it is called “pbest”; that is, the
best value of the particle. As for the other, it is the best fitness value
acquired by any particle in the population until that time. This va-
lue is the global best value in the population and is called “gbest”.

3.2.4. Calculating the particle speeds and updating their locations

The speed of each particle in the population is calculated and
their locations are updated according to the best value (pbest) of
the particles and the best global value (gbest) found in the previous
step. Egs. (2) and (3) are used respectively to calculate the speed of
the particles and to update their locations.

k
v;ﬂ =w x vk + 1 x 11 x (pbest;; — xg-) +Cy X1y

x (gbest] — x£)

@)

X =X 4 vkt 3)

Herei=1,2,...,N,, k=1,2,...,Ng and j=1,2 and N, shows the
size of the population; N; shows the number of iterations and 2
shows the dimension of the problem space (C and 7). vf-j- and xf-j-
are the speed and solution (location) of ith particle, respectively.
pbest{-} is the best solution of the ith particle reached until that time
and gbest]’f is the best global solution acquired by any particle in the
population until that time. ¢; and ¢, are acceleration (learning) fac-
tors and direct movements based on particle’s own experience and
the experiences of other particles in the population, respectively. In
this study, both learning factors c; and c, are taken as 2 [47]. r; and
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Fig. 7. The process of prediction of the rest of SNPs of the haplotype m.

r, are random values within the range of [0,1]. w is the inertia
weight and larger inertia weights allow global search, while smaller
inertia weights make local search possible. The experiments per-
formed with values 0.8, 1 and 1.2 of inertia weights indicated that
the results (prediction accuracies) gained for inertia value 1 were
better than those gained for others. Therefore, in this study, the
w value is taken as 1 in order to reach as much better solution as
possible [48].

3.3. Predicting the rest of SNPs by support vector machine

There are different methods including correlation-based [16,17],
entropy-based [22,27], k-nearest neighbors-based [19,26], STAMPA-
based (selection of tag SNPs to maximize prediction accuracy)
[7,9], Bayesian network-based [8] and SVM-based [10,21] methods
that are used to predict the values of the rest of SNPs. Of these
methods, SVM is generally preferred in bioinformatics due to its
accurate results and high competition with other data mining
methods like neural networks [1,10,49]. SVM creates a model
based on the SNP values in haplotype given as training set in the
first place. Subsequently, it predicts the rest of SNPs values in the
haplotype present in the test set through the developed model
and tag SNPs resulting from the above-mentioned GA method.

In SVM-based prediction method, every haplotype present in H
matrix is considered one test set where each tag SNP represents

one certain feature and each of the rest SNPs represents one certain
class. Fig. 7 gives an example of the prediction process for the rest
of SNPs.

Integrated software Libsvm, which is designed for support vec-
tor classification, is used in the present study [50]. Optimized C
and 7y parameters in PSO algorithm are used with it.

When the fitness value is calculated for a chromosome in the
population matrix formed by GA, C and y parameters in the particle
that is equivalent to the same row in the particle population matrix
formed by PSO are used. For example, to calculate the fitness value
of chromosome 2 in Fig. 7, particle 2 in the particle population ma-
trix is used. This value is accepted as the fitness value of chromo-
some 2 for GA and particle 2 for PSO.

4. Experimental datasets

The following datasets of the HapMap project [51] and the re-
lated studies were processed in the present study.

ACE (Angiotensin Converting Enzyme) dataset [52]: It includes
22 haplotypes of 11 individuals and 52 bi-allelic SNPs at 24 Kb
genomic region on chromosome 17g23.

ABCB1 (ATP-Binding Cassette, sub-family B) [53]: This dataset is
related to P-glycoprotein and includes 74Kb of the genome se-
quence. It contains 494 haplotypes of 247 individuals and 27 bi-
allelic SNPs.
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Fig. 8. The prediction accuracy rates of GA-SVM method with parameter optimi-
zation and other recent methods for ACE dataset.

LPL (The Human Lipoprotein Lipase) dataset [54]: This includes
5.5 Kb of region on chromosome 19q13.22. It contains 88 SNPs and
142 haplotypes of 71 individuals.

The chromosome 5q31 dataset [30]: This is obtained from the
616 Kb region of human chromosome 531 from 129 family trios.
It contains 103 bi-allelic SNPs; however, only the children popula-
tion was used in the study.

Two gene regions STEAP and TRPMS. These datasets include 30
CEPH (Utah residents with ancestry from northern and western
Europe) family trios from HapMap [51]. The number of bi-allelic
SNPs in each region changed between 22 and 101; however, only
the parent population was used in the study.

The D9 dataset of population D [31]: This dataset includes 180
haplotypes of 30 family trios in Yoruba’s population. It contains
49 bi-allelic SNPs.

Three ENCODE regions from Hapmap Regions ENm013, ENr112
and ENr113 from 30 CEPH family trios obtained from HapMap EN-
CODE project [51] are 500 Kb regions of chromosomes 7¢g21.13,
2p16.3 and 4q26, respectively. The number of bi-allelic SNPs geno-
typed in each region is 361, 412 and 515. The genotypes corre-
sponding to the parents from each dataset are used in the study.

5. Experimental results

A program was developed in MATLAB 7.4 software to evaluate
the performance of GA-SVM method with parameter optimization
in the study, and for this purpose, a SVM program designed by
Chang and Lin and named as Libsvm software [50] was used. A tar-
get machine was used for the experiments, which had an Intel Cor-
e2Quad@2.83 GHz processor and 4 GB memory, and run on
Microsoft Windows 7 Professional Edition 0S. A GA was selected
for the experiments, which had a generation number of 20, popu-
lation size of 20, crossover rate of 0.9, and mutation rate of 0.01. In
addition, a PSO was used, which had a generation number of 20,
population size of 20, both of learning factors of 2 and inertia
weight of 1. For both C and y parameters the search range
[1072,10%] was used, and it was accepted that [Viin Vimax] =[-
—10,10]. These parameters were determined by trial and error
method in the experiments and they were concluded to provide
the best results. Thus, they were used for all datasets in this study.

Various experiments for different range values of C and 7y
parameters were carried out to test the advantages of PSO over
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Fig. 9. The prediction accuracy rates of GA-SVM method with parameter optimi-
zation and other recent methods for ABCBI dataset.
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Fig. 10. The prediction accuracy rates of GA-SVM method with parameter
optimization and other recent methods for LPL dataset including 88 unique
haplotypes.

exhaustive grid search. In the first of these experiments, while
the same fitness values were obtained with exhaustive grid search
(the number of grid points is 50% = 2500) and PSO within the range
of [0.1,5] for these parameters, it was seen that PSO worked 250
times faster than the other. In the second experiment, though the
same fitness values were obtained with exhaustive grid search
(the number of grid points is 100? = 10000) and PSO in the range
of [0.1,10] for these parameters, PSO worked 1000 times faster
than the other. These experiments indicated that the PSO used
for the optimization of C and y parameters worked much faster
than exhaustive grid search algorithm. Moreover, both algorithms
provided the same fitness values.

In addition, the LOOCV method was used at the haplotype level
to evaluate the prediction accuracy of GA-SVM method with
parameter optimization [7-10,17,21]. However, 10-fold cross vali-
dation was used in the local search algorithm used in the adjusting
procedure in this method.

The GA-SVM method with parameter optimization suggested
for ACE dataset with 52 SNPs was compared to BNTagger [8] and
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Fig. 11. The prediction accuracy rates for (a) 5q31 (b) TRPM8 (c) STEAP and (d) D9 datasets at different numbers of tag SNPs.

Eigen2htSNP [17] methods. Fig. 8 presents the experimental re-
sults for this dataset. Accordingly, the proposed method provided
considerable higher performance than other two methods for all
tag SNPs numbers and conditions. In addition, prediction accuracy
of GA-SVM method with parameter optimization gradually in-
creases in parallel with the tag SNPs number. And, it showed
4.39% and 7.2% more prediction accuracies at the range of 1-10
tag SNPs than BNTagger and Eigen2htSNP methods, respectively,
on the average.

The GA-SVM method with parameter optimization suggested
for ABCB1 dataset with 27 SNPs was compared to Eigen2htSNP
and STAMPA [7] methods in the present study. Accordingly, it ob-
tained 95.3% prediction accuracy for one tag SNP, while Ei-
gen2htSNP methods achieved only 55% of prediction accuracy. In
addition, it obtained 97% prediction accuracy for two tag SNPs,
while STAMPA method achieved 96.5%. As seen in Fig. 9, the pro-
posed method obtained 27.2% and 0.8% higher prediction accuracy
at the range of 2-10 tag SNPs than other two methods,
respectively.

The GA-SVM approach with parameter optimization was com-
pared to STAMPA, BNTagger, SVM/STSA [10], BPSO [9] and PSO-
SVM [21] methods in terms of prediction accuracy for LPL dataset
involving 88 unique haplotypes. Accordingly, as seen in Fig. 10, the
suggested method presented higher performance rates than other
methods. Especially at the range of 2-20 tag SNPs, it obtained
4.11%, 2.59%, 4.40%, 6.37% and 1.50% higher prediction accuracy

rates than PSO-SVM, BPSO, SVM/STSA, BNTagger and STAMPA
methods, respectively.

Fig. 11a gives the comparison results on prediction accuracies of
GA-SVM method with parameter optimization and PSO-SVM,
BPSO, SVM/STSA, BNTagger and STAMPA methods for different
tag SNPs numbers in the dataset 5q31 with 103 SNPs. In this figure,
the proposed method obtained 1.15%, 0.92%, 2.15%, 2.6% and 5.76%
more prediction accuracies at the range of 1-10 tag SNPs compared
to PSO-SVM, BPSO, SVM/STSA, BNTagger and STAMPA methods,
respectively.

The GA-SVM method with parameter optimization was com-
pared to PSO-SVM, BPSO, SVM/STSA and STAMPA methods in
terms of TRPMS8 dataset. Accordingly, the suggested method pro-
vided higher accuracy than PSO-SVM, BPSO, SVM/STSA and STAM-
PA methods, as can be seen in Fig. 11b.

The GA-SVM method with parameter optimization obtained
higher prediction accuracy rates for STEAP and D9 datasets com-
pared to STAMPA, SVM/STSA and BPSO methods. The comparison
results are shown in Fig. 11c and d.

Various experiments were carried out to evaluate the perfor-
mance of the GA-SVM method with parameter optimization on
larger datasets. When choosing the datasets used in these experi-
ments, it was made sure that these datasets were commonly used
by the methods compared. Therefore, the datasets ENmO13,
ENr112 and ENr113, which are also used by the STAMPA, were se-
lected (The datasets with more than 100 SNPs were processed by
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Fig. 12. The prediction accuracy rates for (a) ENmO013 (b) ENr112 and (c) ENr113 datasets at different numbers of tag SNPs.

only the STAMPA method). As it is seen in Fig. 12, in the experi-
ments carried out on ENmO13, ENr112 and ENr113 datasets, at
the range of 2-10 tag SNPs, the GA-SVM method with parameter
optimization, in comparison with the STAMPA method, provided
higher prediction accuracy of 7.8%, 10% and 5.9% on the average,
respectively.

The running times of the proposed method for different num-
bers of tag SNPs are given in Table 1. The running times of the
SVM/STSA method on 5q31, TRPMS8 and STEAP datasets were taken
from the original study. The running times of the STAMPA method
in the range of 2-10 tag SNPs on all datasets were determined by
carrying out experiments, but since the time change in this range
is very small, it is not shown in the table. For instance, the STAMPA
method is able to determine all tag SNPs in the range of 2-10 for
ACE, the smallest dataset that we used, in 2 s. On the other hand,
the proposed method determines 2 tag SNPs in 2 min and 16s,
while it determines 10 tag SNPs in 6 min and 41 s. The STAMPA
method selects all tag SNPs from 2 to 10 for the dataset 5q31 in
7 s, while the SVM/STSA method selects 2 tag SNPs in 5 h and 10
tag SNPs in 24 h. As for the suggested method, it determines 2
tag SNPs in 2 h and 54 min and 10 tag SNPs in 8 h and 30 min.
The experiments carried out on ENr113, the largest dataset, indi-
cated that the STAMPA method determined all tag SNPs in the
range of 2-10 in approximately 6 min. The suggested method, on

the other hand, determines 2 tag SNPs in 7 h and 12 min and 10
tag SNPs in 29 h 19 min. As it is understood from the experiments
carried out, the GA-SVM method with parameter optimization
works faster than the SVM/STSA method, while it works slower
than the STAMPA method. Since the LOOCV method was used to
evaluate the prediction accuracy in all three methods, the number
of haplotypes affects the running times as the number of SNPs
does.

As can be seen in Table 1, for all of the datasets except for the
ABCB1 and STEAP, the running time of the GA-SVM method with
parameter optimization goes up as the number of tag SNPs in-
crease as well. However, as the number of tag SNPs increases,
the running time of the proposed method decreases for the ABCB1
dataset, while it remains almost the same for the STEAP dataset. In
the experiments carried out, it was observed that while the num-
ber of tag SNPs increases within 1-10 tag SNP range, the running
time of the proposed method increased for datasets with more
than 40 SNPs, while the running time of the proposed system gen-
erally decreased for datasets with less than 40 SNPs.

In this study, two more experiments were carried out to better
evaluate the running time and prediction accuracy of the GA-SVM
method with parameter optimization proposed and to give an idea
about real scenarios in which nothing is known about the patient
studied on. In the first one, the PSO applied for parameter optimi-
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Table 1
Running times of GA-SVM with parameter optimization and SVM/STSA methods for different datasets at different numbers of tag SNPs.
Datasets (NHap, Methods The number of tag SNPs
NSNP)
1 2 3 4 5 6 7 8 9 10
ACE (22, 52) GA-SVM with Par.Opt. 1m39s 2m16s 3m25s 4m17s 4m58s 4m44s 5m52s 6m 6m25s 6m4ls
ABCB1 (494, 27) GA-SVM with Par.Opt. 1h15m 1h7m 58m 57 m 51 m 53 m 47 m 43 m 40 m 37m
43s 23s 23s 11s 54s 41s 10s 30s
LPL (88, 88) GA-SVM with Par.Opt. 7m35s 11m 15m 19m 22m4s 26m 30m 35m 38m 44 m
13s 41s 23s 19s 58s 58s 55s 24s
D9 (180, 49) GA-SVM with Par.Opt. 14m8s 19m5s 23m3s 31m 34m3s 42m 52m 53m 1h4m 1h17m
23s 40s 57s 42s
5q31 (258, 103) SVM/STSA 3h 5h - 11h - 16 h - 18h - 24 h
GA-SVM with Par.Opt. 2h32m 2h54m 3h45m 4h5m 4h11m 5h2Im 6h10m 6h55m 7h2Im 8h30m
TRPMS (120, 101) SVM/STSA 1h 2h - 5h - 9h - 16h - 23h
GA-SVM with Par. Opt.  19m 23m 29m 28 m 37m 33m 47 m 46 m 48m8s 53m
25s 31s 31s 27s 47 s 24s 13s 34s
STEAP (120, 22) SVM/STSA 14 m 27m - 1h - 2h - 3h - 4h
GA-SVM with Par.Opt. 2m35s 2m30s 2m44s 2m37s 2mb58s 2mb58s 2mb57s 2mb52s 2m43s 2m46s
ENmO013 (120, 361) GA-SVM with Par.Opt. 2h40m 3h32m 4h27m 5h43m 6hi12m 6h54m 7h45m 10h 10h 15h
32m 43 m 27m
ENr112 (120, 412) GA-SVM with Par.Opt. 3h4m 4h12m 5h35m 6h47m 10h 11h 13h 16 h 20h 24 h
32m 20m 55m 26 m 53 m
ENr113 (120, 515) GA-SVM with Par.Opt. 5h18m 7h12m 10h 10h 13h 17h 19h 22h 25h 29h
21m 54 m 52m 15m 59m 21m 37m 19 m

NHap = The number of haplotypes, NSNP = The number of SNPs, h = hour, m = minute, s = second.

Table 2
Prediction accuracies of the GA-SVM method with parameter optimization and the methods used in the two experiments for different datasets at different numbers of tag SNPs
(to make evaluations at the individual level, the LPL dataset that consists of 142 haplotypes was used in the experiments).

Datasets (NHap, NSNP) Methods The number of tag SNPs
1 2 3 4 5 6 7 8 9 10
ACE (22, 52) GA-SVM with LK. (H) 88.6 90.9 93.5 94.5 95.4 95.8 95.9 96.1 96.2 96.4
GA-SVM with PO. (I) 89.0 91.5 929 93.3 93.5 93.6 93.5 93.7 93.7 934
GA-SVM with PO. (H) 89.5 91.8 94.9 96.0 96.8 96.8 96.9 96.9 96.8 97.0
ABCB1 (494, 27) GA-SVM with LK. (H) 95.3 97.0 97.8 98.3 98.5 98.6 98.7 98.8 99.0 99.1
GA-SVM with PO. (I) 95.3 97.0 97.7 98.3 98.5 98.6 98.8 98.9 99.0 99.1
GA-SVM with PO. (H) 95.3 97.0 97.8 98.3 98.6 98.6 98.8 98.9 99.0 99.1
LPL (142, 88) GA-SVM with LK. (H) 93.1 94.5 95.5 95.7 96.2 96.6 97.1 97.2 97.4 97.5
GA-SVM with PO. (I) 92.6 93.9 94.7 95.4 95.7 96.0 96.2 96.3 96.5 96.5
GA-SVM with PO. (H) 93.1 94.7 95.8 96.2 96.8 97.2 97.6 97.8 97.8 97.9
D9 (180, 49) GA-SVM with LK. (H) 81.5 84.7 86.3 87.5 88.7 89.5 90.4 91.2 92.4 92.8
GA-SVM with PO. (I) 81.5 84.8 86.3 87.6 88.8 90.1 90.7 91.3 92.3 92.5
GA-SVM with PO. (H) 81.9 85.2 87.1 87.9 89.1 90.4 92.0 92.4 93.2 934
5q31 (258, 103) GA-SVM with LK. (H) 86.7 89.6 91.8 93.2 94.7 95.7 96.3 96.7 97.1 97.3
GA-SVM with PO. (I) 86.6 89.5 92.3 93.7 94.8 95.6 96.1 96.5 96.6 96.8
GA-SVM with PO. (H) 86.8 91.1 92.6 93.8 95.0 95.9 96.5 97.2 97.6 97.9
TRPM8 (120, 101) GA-SVM with LK. (H) 90.0 90.6 92.2 93.0 93.3 94.5 95.3 96.2 96.6 97.2
GA-SVM with PO. (I) 89.8 90.9 92.4 92.7 93.4 94.3 95.5 96.3 96.5 97.3
GA-SVM with PO. (H) 90.0 91.4 92.8 93.1 94.1 95.1 96.1 96.9 97.1 97.8
STEAP (120, 22) GA-SVM with LK. (H) 94.4 98.3 99.5 99.7 99.7 99.8 99.8 99.9 99.9 99.9
GA-SVM with PO. (I) 94.5 98.6 99.5 99.7 99.8 99.8 99.8 99.8 99.9 99.9
GA-SVM with PO. (H) 94.5 99.1 99.6 99.8 99.8 99.8 99.9 99.9 99.9 99.9
ENmO013 (120, 361) GA-SVM with LK. (H) 86.1 92.5 94.1 95.4 96.4 96.8 97.3 974 97.6 97.8
GA-SVM with PO. (I) 84.1 91.5 94.2 95.1 96.3 96.7 97.2 97.5 97.6 97.8
GA-SVM with PO. (H) 84.6 91.7 94.8 96.3 96.8 97.2 97.6 97.6 97.7 97.9
ENr112 (120, 412) GA-SVM with LK. (H) 82.6 85.1 87.0 88.6 90.1 90.7 91.6 91.9 92.7 93.0
GA-SVM with PO. (I) 824 85.2 87.4 88.5 90.0 90.9 914 91.7 92.2 92.5
GA-SVM with PO. (H) 82.7 85.3 88.0 89.0 90.3 914 91.7 92.0 92.7 93.0
ENr113 (120, 515) GA-SVM with LK. (H) 78.5 84.5 88.2 91.0 91.7 92.5 93.0 93.4 93.8 94.1
GA-SVM with PO. (I) 78.2 84.4 88.3 90.7 91.5 92.3 92.9 93.4 93.9 94.0
GA-SVM with PO. (H) 78.6 84.8 88.5 91.2 92.1 92.7 933 93.8 94.2 94.5

NHap = The number of haplotypes, NSNP = The number of SNPs, GA-SVM with LK. (H) = The GA-SVM method, in which the LOOCV method implemented at the haplotype
level and linear kernel function are used, GA-SVM with PO. (I) = The GA-SVM method with parameter optimization, in which the LOOCV method implemented at the
individual level is used, GA-SVM with PO. (H) = The GA-SVM method with parameter optimization, in which the LOOCV method implemented at the haplotype level is used.

zation in the proposed method was not used and Linear kernel tion accuracy of the GA-SVM method with parameter
function was used instead of RBF kernel function in the SVM clas- optimization, the LOOCV method applied at individual level in-
sifier (GA-SVM with LK. (H)). In the second, to evaluate the predic- stead of the LOOCV method applied at the haplotype level was
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Table 3
Running times of the GA-SVM method with parameter optimization and the methods used in the two experiments for different datasets at different numbers of tag SNPs (To
make evaluations at the individual level, the LPL dataset that consists of 142 haplotypes was used in the experiments).

Datasets Methods The number of tag SNPs
(NHap, NSNP)
1 2 3 4 5 6 7 8 9 10
ACE (22, 52) GA-SVM with LK. (H) 1m35s 2m 2m 3m3s 3m 4m 4m 5m 5m 5m
36s 45s 47 s 30s 31s 44s 25s 35s
GA-SVM with PO. (I) 1m48s 2m8s 2m 3m 4m 5m 5m 6m20 5m 6m4s
46 s 27s 10s 24s 10s s 41s
GA-SVM with PO. (H) 1m39s 2m 3m 4m 4m 4m 5m 6 m 6 m 6m
16s 25s 17s 58s 44 s 52s 25s 41s
ABCB1 (494, 27) GA-SVM with LK. (H) 38m29s 37m 34m 32m 33m 33m 34m 30m 30m 27 m
59s 52s 4s 51s 36s 9s 31s 47 s 10s
GA-SVM with PO. (I) 21m33s 20m 20m 21m 20m 22m 19m 18 m 20m 15 m
48 s 38s 27s 35s 14s 5s 8s 47 s 39s
GA-SVM with PO. (H) 1h15m 1h 58 m 57 m 51m 53 m 47 m 43 m 40 m 37m
7m 43s 23s 23s 11s 54s 41s 10s 30s
LPL (142, 88) GA-SVM with LK. (H) 9m55s 16 m 16 m 20m 23 m 27 m 33m 33m 36 m 41 m
10s 47 s 8s 2s 25s 35s 55s 12s 32s
GA-SVM with PO. (I) 8m13s 16 m 20m 27 m 30m 34 m 35m 38m 48 m 50 m
28s 8s 44 s 59s 49 s 48 s 43s 24s 50s
GA-SVM with PO. (H) 19m9s 21m 29m 34m 38m 40 m 50 m 55m 1h 1h
43s 59s 26s 20s 22s 14s 27s 7 m 9m
D9 (180, 49) GA-SVM with LK. (H) 10m 18s 12m 14m 19m 21m 28 m 32m 40 m 46 m 49 m
22s 21s 59s 47 s 58s 12s 57s 54s
GA-SVM with PO. (I) 6m52s 9Im 13 m 16 m 24 m 31m 35m 42 m 41 m 59m
54s 57s 51s 9s 17s 13s 13s 24s
GA-SVM with PO. (H) 14m8s 19m 23 m 31m 34 m 42 m 52 m 53 m 1h 1h
5s 3s 23s 3s 40 57s 42's 4m 17 m
531 (258, 103) GA-SVM with LK. (H) 1h21m 1h 2h 2h 2h 3h 3h 4h 4h 5h
38m 5m 16 m 32m Tm 30m 7m 41 m 8m
GA-SVM with PO. (I) 1Th7m 1h 2h 2h 3h 3h 4h 5h 6h 6h
39m 20m 47 m 19m 50 m 59m 24 m 15m 17 m
GA-SVM with PO. (H) 2h32m 2h 3h 4h 4h 5h 6h 6h 7h 8h
54 m 45 m 5m 11m 21m 10 m 55m 21m 30m
TRPMS (120, 101) GA-SVM with LK. (H) 13m23s 15m 17m 21m 23 m 24 m 29 m 28 m 27 m 36 m
22s 22s 11s 23s 55s 37s 32s 7s
GA-SVM with PO. (I) 10m47s 17m 19m 26 m 33m 32m 36m 39m 44 m 48 m
11s 9s 36s 50s 38s 55s 42's 8s 33s
GA-SVM with PO. (H) 19m25s 23m 29m 28 m 37m 33m 47 m 46 m 48 m 53 m
31s 31s 27s 47 s 24s 13s 8s 34s
STEAP (120, 22) GA-SVM with LK. (H) 1m46s 1m 1m 1m 1m 1m 1m Tm Tm 1m
51s 49s 55s 54s 42s 42s 45s 28s 35s
GA-SVM with PO. (I) 1m29s 1m 1m 1m 1m 1m 1m 1m 1m 1m
30s 36s 43s 36s 43 s 47 s 40s 53s 39s
GA-SVM with PO. (H) 2m35s 2m 2m 2m 2m 2m 2m 2m 2m 2m
30s 44 s 37s 58s 58s 57s 52s 43s 46's
ENmO13 (120, 361) GA-SVM with LK. (H) 2h3m 2h 3h 4h 5h 5h 5h 7h 8h 13h
52m 34m 34m 59m 33m 44 m 28 m 34m 26 m
GA-SVM with PO. (I) 2h37m 2h 3h 4h 6h 5h 8h 9h 12h 15h
50 m 32m 33m 58 m 40 m 1m 5m 47 m
GA-SVM with PO. (H) 2h40m 3h 4h 5h 6h 6h 7h 10h 10h 15h
32m 27 m 43 m 12m 54m 45 m 32m 43 m 27m
ENr112 (120, 412) GA-SVM with LK. (H) 2h30m 3h 4h 5h 7h 9h 10h 11h 14h 20h
9m 29m 12m 26 m 21m 29m 33m 51m 35m
GA-SVM with PO. (I) 2h51m 3h 4h 6h 8h 10h 12h 14h 18 h 23h
29m 53m 12m 56 m 29m 31m 43 m 27m 41 m
GA-SVM with PO. (H) 3h4m 4h 5h 6h 10h 11h 13h 16 h 20h 24h
12 m 35m 47 m 32m 20m 2m 55m 26 m 53 m
ENr113 (120, 515) GA-SVM with LK. (H) 4h16m 5h 7h 8h 9h 13h 16 h 17h 22h 28h
Im 40 m 53m 50 m 53m 50 m 16 m 16 m
GA-SVM with PO. (I) 4h58m 6h 9h 10h 11h 15h 17h 20h 24h 28h
31m 25m 15m 47 m 25m 49 m 11m 7m 49 m
GA-SVM with PO. (H) 5h18m 7h 10h 10h 13h 17h 19h 22h 25h 29h
12 m 21m 54 m 52m 15m 59m 21m 37m 19m

NHap = The number of haplotypes, NSNP = The number of SNPs, h = hour, m = minute, s = second, GA-SVM with LK. (H) = The GA-SVM method, in which the LOOCV method
implemented at the haplotype level and linear kernel function are used, GA-SVM with PO. (I) = The GA-SVM method with parameter optimization, in which the LOOCV
method implemented at the individual level is used, GA-SVM with PO. (H) = The GA-SVM method with parameter optimization, in which the LOOCV method implemented at
the haplotype level is used.

used (GA-SVM with PO. (I)). Prediction accuracies of the GA-SVM
method with parameter optimization and the methods used in the

two experiments are presented in Table 2 for different datasets at
different numbers of tag SNPs. As it is clear from Table 2, the pro-
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posed GA-SVM method with parameter optimization provided
better prediction accuracies for different datasets at the range of
1-10 tag SNPs in comparison with the other two methods. For
example, in comparison with the methods used in the first and sec-
ond experiments, the method suggested for ACE, which is the
smallest dataset, provided 1.01% and 2.53% higher prediction accu-
racies the average, respectively. Similarly, for ENr113, the largest
dataset, the proposed method provided 0.30% and 0.41% higher
prediction accuracies on the average respectively in comparison
with the other two methods used in the experiments.

In the second experiment, it was seen that the GA-SVM method
with parameter optimization in which LOOCV method was imple-
mented at individual level rather than at haplotype exhibited high-
er prediction accuracy compared to the methods in other
publications. For example, it was demonstrated that the GA-SVM
method with parameter optimization in which LOOCV method
was implemented at individual level for ACE dataset at the range
of 1-10 tag SNPs showed 1.81% and 4.71% higher prediction accu-
racy on average compared to BNTagger and Eigen2htSNP methods,
respectively. Similarly, it was demonstrated that the method used
in the second experiment for ENr113 dataset at the range of 1-10
tag SNPs exhibited 4.16% higher prediction accuracy on average
compared to the STAMPA method.

Running times of the GA-SVM method with parameter optimi-
zation and the methods used in the two experiments are presented
in Table 3 for different datasets at different numbers of tag SNPs. As
can be seen in Table 3, the proposed GA-SVM method with param-
eter optimization for different datasets determines the tag SNPs in
the range of 1-10 more slowly in comparison with the methods
used in the first and second experiments.

6. Discussion and conclusion

A new method is developed and suggested in the present study
to select the tag SNPs, and accordingly, predict the rest of SNPs in a
gene. This information is commonly used to identify the genetic
variants related to complicated disorders. The method suggested
in the study is named as GA-SVM method with parameter optimi-
zation, and it benefits from SVM and GA to predict SNPs and select
tag SNPs, respectively. In addition, PSO is used to optimize C and y
parameters of support vector machine. In the study, GA-SVM
method with parameter optimization is experimentally compared
to other common methods to test its prediction accuracy on data-
sets with different sizes.

In this study, the GA-SVM method with parameter optimization
was applied to tag SNP selection problem, and two different search
algorithms were used to select both tag SNPs and SVM parameters.
Instead of the LOOCV method, 10-fold cross validation was used to
determine the chromosome with the best fitness value among the
candidate chromosomes in the local search algorithm used in the
adjusting procedure of tag SNP selection. Thus, the speed of this
search algorithm was increased ten times. Furthermore, the PSO
was preferred to exhaustive grid search because it was observed
that the former algorithm worked approximately 250 times faster
than the latter even for the narrow range of [0.1,5] (the number of
grid points is 50% = 2500) for C and 7y parameters.

As can be seen in the results of the experiments carried out on
the datasets used, as the number of tag SNPs increases, the predic-
tion accuracy of the suggested method regularly increases, too.
Moreover, as the number of SNPs increases, the running time of
the GA-SVM method with parameter optimization increases as it
is the case with the STAMPA and SVM/STSA methods.

Consequently, experiment results prove that the method sug-
gested in the study has considerably higher prediction accuracy
for all possible number of tag SNPs than other methods.
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