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In the framework of handwriting recognition, we present a novel GA–based feature selection algorithm in
which feature subsets are evaluated by means of a specifically devised separability index. This index mea-
sures statistical properties of the feature subset and does not depends on any specific classification
scheme. The proposed index represents an extension of the Fisher Linear Discriminant method and uses
covariance matrices for estimating how class probability distributions are spread out in the considered
N-dimensional feature space. A key property of our approach is that it does not require any a priori
knowledge about the number of features to be used in the feature subset. Experiments have been per-
formed by using three standard databases of handwritten digits and a standard database of handwritten
letters, while the solutions found have been tested with different classification methods. The results have
been compared with those obtained by using the whole feature set and with those obtained by using stan-
dard feature selection algorithms. The comparison outcomes confirmed the effectiveness of our approach.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

It is generally agreed that one of the main factors influencing
performance in handwriting recognition is the selection of an
appropriate set of features for representing input samples (Ahlgren
et al., 1971; Shi et al., 1998; Chung et al., 1997; Kim et al., 2000;
Oliveira et al., 2003; Nunes et al., 2004; Cordella et al., 2008). This
has led to the development of a large variety of feature sets, which
are becoming increasingly larger in terms of number of attributes.
The aim is to address the problem of diversity in style, size, and
shape, which can be found in handwriting produced by different
writers (Kim and Govindaraju, 1997). The effect is that the effi-
ciency of learning algorithms may degrade, especially in presence
of irrelevant or redundant features.

To overcome this problem and maximize classification perfor-
mance, many techniques have been proposed for reducing the
dimensionality of the feature space in which data have to be pro-
cessed. These techniques, generally denoted as feature reduction
(Fodor, 2002), may be divided in two main categories, called fea-
ture extraction and feature selection. Feature extraction–based
methodologies transform the original feature space into a
smaller one. The transformation can be any linear or nonlinear
combination of the original features (Fukunaga, 1990). Feature
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selection–based approaches, instead, produce as output a feature
subset from the original one, without any kind of transformation
(Guyon and Elisseeff, 2003). Such subset is supposed to include
the best features according to a certain criterion. The role of such
criterion consists in identifying the subset providing the most
discriminative power.

The choice of a good feature subset is a crucial step in any
classification process for several reasons:

– The features used to describe the patterns determine the search
space to be explored during the learning phase. Then, irrelevant
and noisy features make the search space larger, increasing both
the time and the complexity of the learning process.

– If the considered feature subset does not include all the infor-
mation needed to discriminate patterns belonging to different
classes, the achievable classification performances may be
unsatisfactory, regardless the effectiveness of the learning algo-
rithm employed.

– Irrelevant and noisy features improperly chosen may make the
learning process ineffective.

– The computational cost of the classification process depends on
the number of features used to describe the patterns. Then,
reducing such number results in a significant reduction of this
cost.

When the cardinality N of the whole feature set Y is high, the
problem of finding the optimal feature subset becomes computa-
tionally intractable because of the resulting exponential growth
ction approach with an application to handwritten character recognition.
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Fig. 1. The feature selection process.
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of the search space, made of all the 2N possible subsets of Y. Many
heuristic algorithms have been proposed in the literature for find-
ing near–optimal solutions: Greedy selection (Kwak and Choi,
2002), branch and bound (B&B) (Somol et al., 2004), floating search
(Somol et al., 1994). These algorithms use greedy stepwise strate-
gies that incrementally generate feature subsets by adding the fea-
ture that produces the highest increment of the evaluation
function. Since these algorithms do not take into account complex
interactions among several features, in most of the cases they lead
to sub–optimal solutions. An alternative way to cope with the
search problem is that of using genetic algorithms (GAs), which
have demonstrated to be an effective search tools for finding
near–optimal solutions in complex and non–linear search spaces
(Goldberg, 1989). For this reason, GA-based search strategies have
been widely used to solve feature selection problems (Kudo and
Sklansky, 2000; Oh et al., 2004; Cordella et al., 2010; De Stefano
et al., 2007; Siedlecki and Sklansky, 1989; Yang and Honavar,
1998). In (Kudo and Sklansky, 2000; Oh et al., 2004), a Nearest
Neighbor (NN) classifier has been used for evaluating feature sub-
sets, while in (Yang and Honavar, 1998) this goal is achieved by
using a Neural Network and by combining the classification results
with some costs associated to the features. In particular, in (Oh
et al., 2004), a hybrid mechanism is proposed for finding better
solutions in the neighborhood of each solution found by the GA.
Moreover, comparative studies have demonstrated the superiority
of GAs in feature selection problems involving large numbers of
features (Kudo and Sklansky, 2000). In all the mentioned ap-
proaches, however, the cardinality of the subset to be found must
be a priori fixed. Finally, in (Chouaib et al., 2008) a GA based meth-
od is presented, which uses a combination of Adaboost classifiers
for evaluating the fitness of each individual in the evolving popu-
lation. The analysis of the experiments shows that their feature
selection method obtains results that are comparable with those
obtained by considering all the features available. Thus, there is
no performance increment, but only a reduction of the computa-
tional complexity.

Feature selection methods can be subdivided into two wide
classes, filter and wrapper. Given a feature subset to be evaluated,
filter functions take into account its statistical properties, while the
wrapper ones use the performance achieved by a certain classifier
trained on that subset. Filters methods generally involve a non-
iterative computation on the dataset, which can be much faster
than a classifier training session. In fact, implementing a classifier
for evaluating the recognition rate attainable on a given subset,
would require a costly training phase of such a classifier on a train-
ing set and a sample by sample labeling procedure on a test set.
Moreover, filters methods evaluate intrinsic properties of the data,
rather than the interactions of such data with a particular classi-
fier: thus, the provided solutions should be more general, allowing
good results to be obtained with a larger family of classifiers. The
main drawback of filter methods is the fact that the objective func-
tion is generally monotonic, and this imply that the algorithm
tends to select the full feature set as the optimal solution. This
forces the user to select an arbitrary cut-off on the number of fea-
tures to be selected. Wrapper methods generally achieve better
recognition rates than filters ones since they are tuned tacking into
account the specific interactions between the considered classifier
and the dataset. These methods, however, are computationally
expensive since they require that the learning procedure must be
repeated for each feature subset, and the obtained results will be
specific for the considered classifier.

Most of the approaches proposed in the context of handwriting
recognition use wrapper methods (Chung et al., 1997; Kim et al.,
2000; Oliveira et al., 2003; Nunes et al., 2004). Their main purpose
is to reduce the number of features, keeping the recognition rate
unchanged, or at most slightly worse.
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Moving from these considerations, we propose a GA–based
feature selection algorithm in which feature subsets are evaluated
by means of a novel separability index. Our algorithm belongs to
the filter method category and has been devised by extending
the Fisher Linear Discriminant (Hart et al., 2001) method. Such
method uses covariance matrices for estimating how the probabil-
ity distributions of patterns are spread out in the considered
N-dimensional space. Given a feature subset X, the Fisher’s
approach estimates the separability of the classes in X by taking
into account two aspects: (i) how patterns belonging to a given
class are spread out around the corresponding class mean vector
(the centroid); (ii) distances among class mean vectors. Moreover,
in order to compare subsets with different number of attributes,
and to balance the effects of the monotonic trend of the separabil-
ity index, we have added to the objective function a further term,
suitable weighted, that takes into account the cardinality of the
subspace to be evaluated. The proposed approach, thanks to the
devised separability index, presents two main advantages: (i) it
does not require that the dimensionality of the searched subspace
(i.e. the actual number of features to be used) is a priori fixed; (ii)
its performances are independent from the classification scheme.

The effectiveness of the proposed approach has been tested by
using three standard databases of handwritten digits and a stan-
dard database of handwritten letters (uppercase and lowercase,
totaling 52 classes), while the solutions found have been used to
train different classifiers. The results have been compared with
those obtained by using the whole feature set and with those ob-
tained by using standard feature selection algorithms. The compar-
ison outcomes confirmed the effectiveness of our approach.

The remainder of the paper is organized as follows: Section 2
discusses the feature selection problem, while Section 3 illustrates
the proposed GA–based feature selection method. Section 4 de-
scribes the fitness function based on a specifically devised separa-
bility index used for subset evaluation. In Section 5 the
experimental results are detailed, while some conclusions are
eventually left to Section 6.
2. The feature selection problem

The goal of feature selection (FS) is that of reducing the number
of features to be considered in the classification stage. This task is
performed by removing irrelevant or noisy features from the whole
set of the available ones. Feature selection is accomplished by
reducing as much as possible the information loss due to the fea-
ture set reduction: thus, at list in principle, the selection process
should not reduce classification performance. The feature selection
process consists of three basic steps (see Fig. 1): a search proce-
dure, a subset evaluation and a stopping criterion. A typical search
procedure uses a search strategy for finding the optimal solution,
according to a given subset evaluation criterion previously chosen.
The search procedure is repeated until a stopping criterion is
satisfied.
ction approach with an application to handwritten character recognition.
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Fig. 2. An example of feature subset encoding by means of a bit string.
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Considering a generic application in which a set of samples (say
Z) must be classified, and assuming that the samples are
represented by means of a set Y of N features, the feature selection
problem can be formulated as follows: find the subset X # Y of M
features which optimizes an objective function J. Given a generic
subset X # Y; JðXÞmeasures how well the patterns in Z are discrim-
inated by using the features subset X.

Example of statistical measures used by filter methods are the
following: Distance (Ho and Basu, 2002), correlation (Guyon and
Elisseeff, 2003; Hall, 2000), information (Ben-Bassat, 1982) and
consistency (Dash and Liu, 2003). Distance-based criteria takes
into account the geometrical characteristics of the class distribu-
tions in order to evaluate how well different classes are separated
in the subset to be evaluated. Correlation measures use measures
able to estimate the dependency between couple of variables. Such
estimation can be used to find the correlation between a feature
and a class. If the correlation between the feature x1 and a given
class ci is higher than that between the feature x2 and ci, then
the feature x1 is preferred to x2 for describing the class ci. A slight
variation of this criterion determines the dependence of a feature
on the other ones; this value can be used to assess the redundancy
degree of the features. Information measures, instead, evaluate the
information gain from a given feature. The information gain of a
feature x is defined as the difference between the a-priori uncer-
tainty and the expected a-posteriori uncertainty of the class label
given x; the entropy measure can be used to estimate these uncer-
tainties. Finally, the consistency measure of a feature subset, is
determined counting the number of samples with the same feature
values, but belonging to different classes.

Once the evaluation function JðXÞ has been chosen, the feature
selection problem becomes an optimization problem whose search
space is the set of all the subsets of Y. As mentioned in the Intro-
duction the size of this search space is exponential (2N). As a con-
sequence, the exhaustive search for the optimal solution becomes
infeasible when a large number of features (N > 50) is involved.
Search strategies like branch and bound (Yu and Yuan, 1993) have
been proposed to strongly reduce the amount of evaluations, but
the exponential complexity of the problem still remains. The expo-
nential size of the search space for the feature selection problem
makes appropriate the use of heuristic algorithms, for finding
near–optimal solutions. Among these search algorithms, greedy
search strategies are computationally advantageous but may lead
to suboptimal solutions. They come in two flavors: forward selec-
tion and backward elimination. Forward selection strategies gener-
ate near–optimal feature subsets by a stepwise procedure which
starts with an empty set. At each step the feature, among those
not yet selected, that most increases the evaluation function J is
added to the so far built subset; this procedure is repeated until
a stop criterion is not satisfied. In backward elimination, instead,
the whole subset of feature is initially considered, and at each step
the feature that least reduce the evaluation function is eliminated.
Both procedures are optimal at each step, but they cannot discover
complex interactions among several features, as is the case in most
of the real world feature selection problems. Then heuristic search
algorithms, like genetic algorithms and simulated annealing (Meiri
and Zahavi, 2006) seems to be appropriate for finding near–opti-
mal solutions which take into account multiple interactions among
several features.
3. The proposed method

In the framework of filter approaches to the feature selection
problem, we propose a new method based on the use of genetic
algorithms (GAs). These algorithms belong to the evolutionary com-
putation paradigm (Goldberg, 1989), which has shown to be very
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effective for solving optimization problems whose search spaces
are high dimensional, discontinuous and complex. Mimicking the
phenomena of natural evolution of species, GAs allows us to evolve
a population of possible solutions, where each of them (denoted as
an individual in the GA jargon) is represented as a binary string.
Crossover and mutation operators are used to modify such strings
in order to explore the search space, i.e. the set of all possible solu-
tions. The method presented here has been implemented by using
a generational GA, in which individuals are binary vectors each
encoding a feature subset. More specifically, given a feature set Y
having cardinality N, a subset X of Y (X # Y) is represented by an
individual I having N elements whose ith element is set to 1 if
the ith feature is included in X, 0 otherwise (see Fig. 2).

Besides the simplicity in the solution encoding, GAs are well
suited for this class of problems because the search in this expo-
nential space is very hard since interactions among features can
be highly complex and strongly nonlinear. The algorithm starts
by randomly generating a population of P individuals, whose val-
ues are set to 1 according a given probability (called one_prob).
Such probability is usually set to low values (�0.1) in order to force
the early stage of the evolutionary search toward solutions having
a small number of features. Then, the fitness of the generated indi-
viduals is evaluated by means of a suitably defined fitness function.
This function takes into account how well the samples belonging to
different classes are separated in the feature subset encoded by an
individual, favoring at the same time the discovery of solutions
containing a smaller number of features. After this evaluation
phase, a new population is generated by first copying the best e
individuals of the current population in order to implement an elit-
ist strategy. Then ðP � eÞ=2 couples of individuals are selected
using the tournament method, which allows both loss of diversity
and selection intensity to be controlled (Blickle and Thiele, 1996).
The one point crossover operator is then applied to each of the se-
lected couples, according to a given probability factor pc . After-
wards, the mutation operator is applied. Then, the fitness
function is computed according to the method illustrated in the
next Section. Finally here individuals are added to the new popula-
tion. The process just described is repeated for Ng generations.
Note that it would be possible that some of the individuals gener-
ated according to the above process encode feature subset for
which it is not possible to compute the fitness function. These solu-
tions are simply discarded by the GA and a new offspring are gen-
erated by selecting other new parents in the current population.
4. Fitness function

The proposed fitness function takes into account two terms: in
the first one, a function J, called separability index, measures the
separability of the patterns belonging to different classes in the
feature subset encoded by an individual. The second term takes
into account the cardinality of the subset so as to favor solutions
containing a smaller number of features.

The separability index J has been derived from the multiple
discriminant analysis (MDA) approach. MDA is an extension to
ction approach with an application to handwritten character recognition.
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C–class problems (C > 2) of the Fisher’s Linear Discriminant (Hart
et al., 2001), which has been defined for finding the best linear
combination of features in case of two class problems.

In our case, assuming that each feature can be modeled as a ran-
dom variable, the separability index J can be computed by using
the covariance matrix of the whole feature set. Before providing
the definition of J, let us recall some general properties of covari-
ance matrix, Fisher’s Linear Discriminant and multiple discrimi-
nant analysis.

Covariance matrix is the generalization of variance of a scalar
variable to multiple dimensions. While variance measures the dis-
persion of the values of a random variable around its mean value,
the covariance matrix of n variables measures how the joint prob-
ability distribution of the variables is spread out in the considered
n-dimensional space around the mean vector. In particular, given n
random variables fx1; x2; . . . ; xng, each sampled by considering m
values (stored in a m� n matrix D), the covariance matrix R is a
n� n matrix in which the element at row i and column j represents
the covariance between the variables xi and xj:

R½i; j� ¼ Covðxi; xjÞ

The covariance matrix is symmetric, in fact the generic element
Covðxi; xjÞ is defined as follows:

Covðxi; xjÞ ¼
1
m

Xm

l¼1

ðD½l; i� � liÞðD½l; j� � ljÞ ð1Þ

where li and lj are the mean values of the elements in the ith and
jth column of D, respectively.1

If samples belonging to different classes are represented in as
points in a N-dimensional space, the kth class can be described
by using its covariance matrix Rk, which is obtained by considering
only the samples belonging to the class k. Such a matrix, in fact, re-
ports information about the variability of kth class samples around
their mean vector ~lk.

Denoting with c0 and c1 the classes to be discriminated and
with x the label associated to a sample ~x, the Fisher’s Linear Dis-
criminant (FLD) (Hart et al., 2001) approach assumes that the con-
ditional probability density functions pð~xjx ¼ c0Þ and pð~xjx ¼ c1Þ
are normally distributed with mean and covariance parameters
ð~l0;R0Þ and ð~l1;R1Þ, respectively. It is also assumed that both clas-
ses have the same a priori probability (Pðc0Þ ¼ Pðc1Þ). The goal of
FLD approach is to find the vector ~w� representing the locus of
the points where the samples are projected, which best separates
the two classes. To this aim, the separation between the above dis-
tributions (denoted as class separability S in the following) has
been computed as the ratio of the variance between the classes
to the variance within the classes:

Sð~wÞ ¼ r2
between

r2
within

¼ ð
~wT~l1 � ~wT~l0Þ2
~wTR0~wþ ~wTR1~w

¼
~wTð~l1 �~l0Þð~l1 �~l0ÞT~w

~wTðR0 þ R1Þ~w
ð2Þ

According to the FDL theory, it can be shown that the best separa-
tion occurs when:

~w ¼ ~w� ¼ ðR0 þ R1Þ�1ð ~l1 � ~l0Þ ð3Þ

Note that the vector ~w� is normal to the discriminant hyperplane
and can be computed through Eq. (3) only if the matrix resulting
from the sum ðR0 þ R1Þ is nonsingular, i.e. invertible.

When there are C classes to be discriminated, the analysis just
described can be extended to find the ðC � 1Þ-dimensional sub-
space, which maximizes the class separability S. Note that if N is
the number of available features, such subspace can be represented
by means of a N � ðC � 1Þmatrix bW. Such a matrix is composed of
1 Note that the element R½i; i� represents the variance of the variable xi .
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ðC � 1Þ N-dimensional vectors, representing the ðC � 1Þ projections
on the transformed space. This approach is usually denoted in the
literature as multiple discriminant analysis (MDA). In this case, the
variances r2

between and r2
within can be expressed in terms of two

matrices denoted as within-class scatter matrix RW and between-
class scatter matrix RB:

RW ¼
XC

k¼1

PðckÞRk

RB ¼
XC

k¼1

PðckÞð~lk �~l0Þð~lk � ~l0ÞT

where PðckÞ denotes the a priori probability of the kth class, Rk and
~lk are the covariance matrix and the mean vector of kth class,
respectively, and ~l0 denotes the overall mean:

~l0 ¼
XC

k¼1

PðckÞ~lk

Note that the within-class scatter matrix RW measures the average
spread of the classes about their mean vectors, while the between-
class scatter matrix RB measures the distances between each class
mean vector and the overall mean.

According to the MDA theory, the class separability S can be
measured as follows:

SðWÞ ¼ jW
TRBWj

jWTRW Wj
ð4Þ

where j � j indicates the determinant.
In this case the best separation is obtained by selecting the pro-

jections that give the best separation among classes. Such projec-
tions individuate the subspace represented by the N � ðC � 1Þ
matrix W�, written as:

W� ¼ R�1
W RB

The matrix W� allows a transformation of the original space in the
projected space, thus a dimensionality reduction from a N to C � 1.
Such a mapping is a good way to handle the curse of dimensionality
but, as explained in (Hart et al., 2001), it can not possibly allow to
obtain the minimum achievable error rate, especially in case of very
large data set. Moreover the computational complexity of finding
the optimal W� is dominated by the calculation of the inverse of
the within-class scatter matrix (R�1

W ). Note that the matrix RW can
be obtained by computing the covariances Rk (k ¼ 1; ::;C) through
Eq. (1), but the computation of R�1

W requires that jRW j– 0 and this
condition is not always verified. Finally, it is worth noticing that
the multiple linear discriminant method does not directly represent
a classification method, but rather it provides the subspace in which
the classes are best separated: in this subspace a classification
scheme must be defined in order to classify the patterns.

Moving from the above consideration, the basic idea of our ap-
proach is that of managing the curse of dimensionality by finding
the optimal mapping from the original N-dimensional space to a
M-dimensional one obtained by considering only a subset of M fea-
tures among the whole set of N available ones. In other words, we
have reformulated the feature extraction problem as a feature
selection one, in which the effectiveness of the selected feature
subspace is measured by using the class separability S defined in
Eq. (4). Following this approach, the matrix W is composed of M
N-dimensional vectors, representing the axes of the transformed
M-dimensional subspace. Such axes constitute the orthonormal
basis of this M-dimensional subspace, and each of them coincides
with one of the axes of the original N-dimensional feature space.
Note that we do not assume that the selected features are indepen-
dent, even if the considered subspaces are orthogonal: in fact, the
ction approach with an application to handwritten character recognition.
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orthogonality of the subspaces is simply a direct consequence of
the basic assumption of our approach, which try to solve a feature
selection problem and not a feature extraction one.

Let us now provide a formal definition of the separability index
J: given an individual I, representing a feature subset X having
dimensionality M, the separability index JðIÞ is computed as
follows:

JðIÞ ¼ tr
WTRBW
WTRW W

 !
ð5Þ

where W is the transformation matrix2 from the original N-dimen-
sional space to the M-dimensional subspace corresponding to the
subset X, while the symbol trð:Þ is the trace operator. High values
of the separability index JðIÞ indicate that, in the subspace repre-
sented by the individual I, the centroids of the classes are well sep-
arated and, at the same time, the patterns are not too much spread
out around their mean values. Without loosing generality, we have
modified the Eq. (4) using the trace operator: in fact, even if there
is no mathematical equivalence between Eqs. (4) and (5), it has been
demonstrated in (Fukunaga, 1990) that they provide the same set of
optimal features. Therefore, we have chosen Eq. (5), which is compu-
tationally more effective.

Eventually, let us now define the fitness function used by our
GA-based feature selection method: given an individual I, its fit-
ness value FðIÞ is computed by applying the formula:

FðIÞ ¼ JðIÞ
N
þ K

N � NI

N
ð6Þ

where N is the total number of features available, NI is the cardinal-
ity of the subset represented by I (i.e. the number of bits equal to 1
in its chromosome) and K is a constant value used to weight the
second term.

Note that in the first term, the separability index J has been di-
vided by N so as to assure that both terms of Eq. (6) range from 0 to
1. The second term has been added since the first one exhibits a
monotonic trend with the number of features. In fact, starting from
a certain set of features, if we add any further feature, the separa-
bility index J do not decrease its value unless the new feature set
makes the matrix RW not invertible. In this case, obviously, the sep-
arability index cannot be computed and the new solution must be
discarded. Thus, using as fitness only the first term of Eq. (6), the
GA may produce solutions in which there are features not contrib-
uting to increase separability index J. These solutions are penalized
by the presence of the second term. Finally, as regards the constant
K, its role is to weight the second term in such a way that individ-
uals having more features are favored only if they exhibits higher
values for the separability index.

5. Experimental Results

In order to ascertain the effectiveness of the proposed approach,
four real world datasets involving handwritten characters have
been taken into account. Since our approach is stochastic, as well
2 For example, if N ¼ 4 is the cardinality of the whole feature space and the
individual I ¼ ð0;1;0;1Þ encodes the subspace X having cardinality 2 (features 2 and
4) the matrix W is the following:

W ¼

0 0
1 0
0 0
0 1

0
BBB@

1
CCCA

Note that if R is the 4� 4 covariance matrix, the product WT RW gives as result the
2� 2 matrix R0 , which represents the projection of R on the subspace encoded by the
individual I.
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as all the EC–based algorithms, 20 runs have been performed for
each experiment carried out. The ability of our system in finding
good subsets has been evaluated by measuring the performance
obtained with three classification algorithms: support vector ma-
chine (SVM) (Vapnik, 1998), multiple layer perceptron (MLP) and
k–Nearest Neighbor (k–NN) (Hart et al., 2001). To this purpose, at
the end of each run, the best feature subset found has been used
for training the considered classifiers and for evaluating their
performance.

As regards the SVM, we used the implementation provided by
the LIBSVM public domain software (Chang and Lin, 2001). In the
experiments described in the following we used three different
kernels: Radial Basis Function (RBF), Polynomial and Sigmoidal.
For the k–NN and MLP classification algorithms, we used the
implementation provided by the WEKA tool (Hall et al., 2009). As
regards the evolutionary parameters, shown in Table 1, they have
been heuristically found performing a set of preliminary trials; this
set of parameters has been used for all the experiments reported
below.

The main objectives of the experiments are the following:

� To investigate the influence of the cost factor K on the perfor-
mance of the system.
� To study if the selected feature subsets are independent of the

choice of the used classifier. To this aim, the subsets found have
been used to train the considered classification algorithms with
different sets of parameters.
� To perform a comparison of the obtained results with those of

other feature selection algorithms reported in the literature.

In the following, the datasets used and the experiments performed
are detailed.

5.1. The datasets

We have used in the experiments three standard databases of
handwritten digits and a standard database of handwritten letters
(uppercase and lowercase, totaling 52 classes). Two of them
(OPTODIGIT and MFEAT) are publicly available from the UCI ma-
chine learning repository (Frank and Asuncion, 2010), the third
one (MNIST) has been made available by the New York University
(LeCun and Cortes, 2010), while the last one (NIST-SD19) is pro-
vided by the National Institute of Standard Technologies (Grother,
1995).

The MFEAT dataset (multiple features dataset) contains 2000
instances of handwritten digits, 200 for each digit, extracted from
a collection of Dutch utility maps. Data are described by using six
different sets of features, totaling 649 features. Each set of features
has been used to describe all the handwritten digits, and arranged
in separate datasets. This implies that we have six datasets (DS1,
. . ., DS6), each containing 2000 samples. For each dataset, the type
of features and their number are the following:

DS1: 76 Fourier coefficients of the character shapes.
DS2: 47 Zernike moments.
Table 1
The evolutionary parameters.

Parameter symbol value

population size P 100
tournament size t 5
elitism size e 1
crossover probability pc 0.6
mutation probability pm 1=N
generation number Ng 1000
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DS3: 6 morphological features.
DS4: 64 Karhunen-Love coefficients.
DS5: 240 pixel averages in 2 � 3 windows.
DS6: 216 profile correlations.

More details about the feature sets can be found in (Breukelen
et al., 1997). Starting from the provided datasets we generated a
further dataset (DS) obtained by merging all the descriptions in-
cluded in the previous ones, in such a way to describe each sample
by the whole set of 649 available features. From the generated
dataset DS, 70 samples per class have randomly extracted to build
a training set (TR). The remaining data have been used to build a
test set (TS) including 130 samples per class. Summarizing, TR
contains 700 samples, while TS contains 1300 samples.

The second considered dataset is the optical recognition of
handwritten digits dataset (OPTODIGIT). It contains 5620 samples
equally distributed among the ten classes. Each sample is de-
scribed by 64 features. Such data have been obtained by preprinted
forms, extracting normalized 32 � 32 bitmaps of handwritten dig-
its. Each bitmap is divided into non-overlapping blocks of 4 � 4
and the number of black pixels are counted in each block. This gen-
erates an input matrix of 8 � 8 where each element is an integer in
the range ½0;16�. As a consequence, a character is represented by a
feature vector of 64 elements where each element contains a value
of a 8 � 8 matrix. In order to build a training set, 3820 samples
have been randomly picked up from the original dataset, while
the remaining ones (1800) have been used as test set.

The third dataset taken into account is MNIST. Such dataset was
constructed from NIST’s Special Database 3 and Special Database 1
which contain binary images of handwritten digits (LeCun and Cor-
tes, 2010). The original black and white images from NIST were size
normalized to fit in a 20 � 20 pixel box while preserving their as-
pect ratio. The resulting images contain gray levels as a result of
the anti-aliasing technique used by the normalization algorithm.
The images were centered in a 28 � 28 image by computing the
center of mass of the pixels, and translating the image so as to po-
sition this point at the center of the 28 � 28 field. Finally, the
MNIST training set is composed of 60,000 samples, while the test
set contains 10,000 samples. The total number of features used
to describe samples is 780, even if some of them assume values
different from zero in less than 1% of samples. For this reason,
Fig. 3. Recognition rate RR (top) and number of features NI (b

Please cite this article in press as: De Stefano, C., et al. A GA-based feature sele
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we discarded such features considering in our experiment only
485 features.

Finally, the NIST-SD19 database (NIST in the following),
contains binary alphanumeric characters. In particular, we have
considered handwritten letters, uppercase and lowercase, corre-
sponding to 52 classes. The handwriting sample form hsf4, contain-
ing 23,941 characters, has been used as training set, while the
handwriting sample form hsf7, containing 23,670 characters, has
been used as test set. hsf4 has 11,941 uppercase characters and
12,000 lowercase ones, while hsf7 has 12,092 uppercase characters
and 11,578 lowercase ones. In each form, characters are segmented
and stored in 128�128 pixel images, each associated to one of the
52 classes to be discriminated. Samples are represented by using
the features proposed in (Oliveira et al., 2002). Each character is
described by a feature vector containing the measures associated
to different parts of the image. More specifically, the image is
divided in six parts and, for each part, 22 features are computed,
totaling 132 features.

5.2. The Constant K

Several experiments have been performed for analyzing how
the constant K affects the behavior of our feature selection method,
in terms of both number of features and classification performance.
Such a performance refers to the use of RBF SVM classifiers. As ex-
pected, the higher K the lower the number of selected features and
the obtainable classification results. For the sake of clarity, we have
not reported in the following plots the values of K for which the
performance is too much degraded.

In the Figs. 3–6 we have reported both the recognition rate (RR)
and the number of features (NI=N) for the datasets MFEAT, OPTO-
DIGIT, MNIST and NIST, respectively. For each value of K we have
reported the average result over the 20 performed runs. Note that
we have shown in the figures only the standard deviations, which
do not assume negligible values.

As regards the MFEAT dataset, the Fig. 3 shows that for a large
interval of K values, the performance is almost constant obtaining
the highest value for K ¼ 0:01. This value has been chosen hereaf-
ter in the experiments for MFEAT dataset, even if values up to 1.0
may be used slightly reducing classification performance, but
strongly reducing also the dimension of the feature space. Similar
ottom) as a function of the constant K for MFEAT dataset.
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Fig. 5. Recognition rate RR (top) and number of features NI (bottom) as a function of the constant K for MNIST dataset.

Fig. 4. Recognition rate RR (top) and number of features NI (bottom) as a function of the constant K for OPTODIGIT dataset.
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considerations hold for the other two datasets: in particular for
OPTODIGIT dataset the optimal value chosen for K is 0.05, even
if the value K ¼ 0:5 results in a very small reduction of the rec-
ognition rate, but using only less than 30% of the available fea-
tures. For the MNIST dataset, the optimal value chosen for K is
0.001, even if the value K ¼ 0:5 corresponds to a small reduction
of the recognition rate, but using only the 10% of the available
features. Finally, as regards NIST, the optimal value chosen for
K is 0.1, even if the value K ¼ 0:1 corresponds to a small reduc-
tion of the recognition rate but using only less than 20% of the
available features.

Summarizing, as shown in Figs. 3–6, the trend of RR as a func-
tion of K is very regular: there is an interval of values of K in which
RR assumes an almost constant or slightly increasing trend and
Please cite this article in press as: De Stefano, C., et al. A GA-based feature sele
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then it rapidly decreases. Thus, exploiting the regularity of RR
curve, a general experimental procedure for setting the value of
the parameter K, is the following: increase the values of K until
RR exhibits slight variations; as soon as RR starts to rapidly de-
crease for a certain value of K, select the previous K value as the
optimal one.

5.3. Behavior analysis

Since our feature selection method does depend on any specific
classifiers, we want to evaluate both the generality and the effec-
tiveness of our results by using different classification algorithms.
As a consequence, for each dataset, the best feature subset
provided by the GA has been tested by using different classifiers
ction approach with an application to handwritten character recognition.
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Fig. 6. Recognition rate RR (top) and number of features NI (bottom) as a function of the constant K for NIST dataset.
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obtained varying the configuration parameters of the three consid-
ered classification schemes (SVM, MLP and k–NN). The obtained
performances have been compared with those achieved by using
the whole feature sets.
Fig. 7. Behavior analysis for the da
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The purpose of such a comparison is twofold: on the one hand,
we want to verify if the selected features allows us to improve the
performance with respect to those relative to all the available fea-
tures. On the other hand, we want to understand if the differences
tasets MFEAT and OPTODIGIT.
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among the considered classifiers actually depend on the selected
features.

For each of the three algorithm, three different configuration
parameter values have been considered, totaling nine classifiers.
More specifically, for the SVM three different kernels have been
used: radial basis function (RBF), Polynomial (with the degree set
to three), and the sigmoid. For the MLP, different classifiers have
been obtained by changing the number of neurons in the hidden
layer. The following values have been used: 50, 100 and 200. Final-
ly, for the k–NN, the following k values have been considered: 1, 3,
5. The performances of the 9 classifiers have been compared by
means of the 10-fold cross validation method. The results are
shown in Figs. 7 and 8. The acronyms SVM-R, SVM-P and SVM-S,
stand for RBF SVM, Polynomial SVM and sigmoidal SVM,respec-
tively. As regards the acronyms MLP-1, MLP-2 and MLP-3 they
refer to the MLPs with 50, 100 and 200 hidden neurons, respec-
tively. The acronyms of the k–NN are self-explanatory.

The figure shows that the feature subsets selected by our meth-
od always give better results than those obtained by using the
whole set of features. Moreover, the trend of the performance
obtained by using of the selected feature subsets is very similar
to that of the whole feature set, confirming the generality of the
proposed feature selection method.
5.4. Comparison findings

In order to test the effectiveness of the proposed system, our re-
sults have been compared with those obtained by four widely
used feature selection techniques. Such techniques combines a
search strategies and a subset evaluation criterion. Moreover, the
Fig. 8. Behavior analysis for the
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performance obtained using the whole feature set has been also
considered.

As regards the search strategies we used the Best First (BF) (Xu
et al., 1988) and the Linear Forward (LF) (Gütlein et al., 2009) ones.
The former strategy searches solutions by using a greedy hill–
climbing technique. It starts with the empty set of features and
adds new features according to the best first search algorithm
(Pearl, 1984). The latter one, instead, represents an extension of
the Best First strategy. Such technique reduces the number of attri-
bute expansions in each forward selection step. It is faster than BF
and it generally finds smaller subsets. Our search strategy, based
on the use of a GA, exhibits an higher computational cost, since
it requires a number of operations equal to the number of individ-
uals in the population by the number of generations.

As subset evaluation criteria we have considered the following
ones: Feature–Class Correlation, Consistency Criterion and three
different wrapper evaluation functions.

The Feature–Class Correlation (FCC) (Hall et al., 1998) evaluates
a feature subset by measuring the correlation among its features
and the classes: it prefers subsets highly correlated with classes,
but having low correlation among features. The Consistency Crite-
rion (CC) (Liu and Setiono, 1996) evaluates the worth of the feature
subsets by using a consistency index measuring how well samples
belonging to different classes are separated. As concerns the wrap-
per functions we used the same three classifiers used for the per-
formance evaluation, namely RBF SVM, a MLP with 200 hidden
neurons and the 3-NN.

The computational complexity of our evaluation function is
lower than those exhibited by both FCC and CC. In fact, we have
used the training set data only for computing, once and forever,
the within-class and the between-class scatter matrices RW and
datasets MNIST and NIST.

ction approach with an application to handwritten character recognition.
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RB. The other evaluation functions, FCC and CC, on the contrary,
compute the feature correlation and the consistency index, respec-
tively, for each subset to be evaluated. Finally, the computational
complexity of the wrapper functions is the highest one, since they
require to perform, for each subset to be evaluated, the training of
the classifier and the evaluation of the corresponding recognition
rate.

The results are shown in Table 2. In the table, the methods con-
sidered for the comparison are denoted by acronyms. For each
acronym the first part denotes the evaluation function, while the
second one the search strategy. For instance, FCC-BF denotes a
comparing method using the Feature–Class Correlation as evalua-
tion function and the Best First search strategy.

Note that the accuracy results have been obtained by using the
10–fold cross validation. For each dataset the number of selected
features are also reported. The last row shows, for each dataset,
the average values of the performance differences between the
proposed approach and the methods taken into account for the
comparison.

The data reported in the table shows that our approach achieves
better results than those obtained by the comparing methods. The
last row of this table, reports the mean values of such improve-
ments, computed averaging the differences between our method
and the others for each dataset. It can be seen that such improve-
ments varies from about 1:7% to 5:6%. As regards the number of
selected features, our approach selects more features than the
compared ones. This is due to the fact that we chose the value of
the constant K, which maximizes the recognition rate even if larger
Table 2
Comparison results.

Cl. MFEAT MNIST

Acc. # Acc.

All SVM 96.77 649 91.13
MLP 97.2 93.95
KNN 96.19 93.47

Our Method SVM 97.69 233 92.94
MLP 98.38 96.15
KNN 96.92 95.22

FCC-BF SVM 97.08 133 91.76
MLP 97.04 94.16
KNN 96.35 93.92

FCC-LF SVM 97.15 106 88.36
MLP 97.54 88.23
KNN 96.77 88.85

CC-BF SVM 93.46 6 73.65
MLP 91.92 68.09
KNN 93.08 70.23

CC-LF SVM 93.92 6 77
MLP 93.08 72.79
KNN 93.92 78.23

MLP-BF SVM 96.92 25 91.57
MLP 96.98 94.74
KNN 95.94 94

MLP-LF SVM 97.19 14 91.68
MLP 97.28 94.85
KNN 96.02 94.15

SVM-BF SVM 96.94 29 91.76
MLP 96.75 93.16
KNN 95.94 93.14

SVM-LF SVM 97 13 91.83
MLP 96.92 93.27
KNN 96.01 93.18

KNN-BF SVM 95.57 31 91.7
MLP 95.3 94.2
KNN 95.88 94.33

KNN-LF SVM 95.57 17 91.85
MLP 97.3 94.27
KNN 95.88 94.36

Avg diff. 1.7 5.6
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values of K allowed a slight performance reduction, but a consider-
able smaller number of features.

In order to have a fair comparison with methods selecting small
numbers of features, and to test the performance of our system
when as less as possible features should be used, we performed a
further set of experiments. More specifically, for each dataset, we
chose in the fitness function a value for the parameter K, such as
to obtain a number of features similar to that provided by the
methods selecting the smallest number of features (CC–LF and
CC-BF). The results of this comparison are shown in Table 3. Also
in this case, accuracy results have been obtained by using the
10–fold cross validation.

The data in the table show that even when high values of K are
used (strong feature reduction), our method performs almost al-
ways better than the other considered ones. In particular, as con-
cerns MFEAT and OPTODIGIT datasets, our approach selects the
same number of feature, or a slightly higher one, but achieves bet-
ter results. The performance increments vary from 1% (MFEAT,
KNN classifier) to 5% (OPTODIGIT, MLP classifier). As for MNIST
dataset, our method selects a number of features higher than the
that of CC–BF method (34 vs 13), but in this case the performance
improvements are more relevant, ranging from 8:8% (SVM) to
16:1% (KNN). Finally, as regards the NIST dataset, the results of
our method are slightly worst than those of CC–LF method
(approximatively from 1% to 2% less). It should be considered, how-
ever, that these are the less favorable conditions for our method: in
fact, as the value of K grows, the second term in the fitness function
becomes more and more relevant with respect to the first one (see
OPTODIGIT NIST

# Acc. # Acc. #

489 97.55 64 56.05 132
97 63.39
97.5 60.25

272 98.61 44 66.16 61
98 71.06
98.94 67.58

144 97.55 35 62.1 64
97.07 64.26
97.72 63.58

58 97.55 35 62.21 57
97.07 64.57
97.72 64.08

13 89.32 9 58.55 17
83.81 64.39
87.54 62.25

20 90.43 9 58.95 14
83.92 64.89
88.65 62.65

65 96.67 33 59.24 48
97.07 64.89
96.56 64.11

43 96.85 26 58.48 41
97.1 65.07
96.88 64.48

68 97.47 35 61.2 46
97.04 66.23
96.63 65.25

47 97.67 30 61.4 40
97.44 66.45
97.63 65.55

71 97.14 39 58.48 59
96.65 65.07
97.5 64.48

41 97.6 32 58.68 48
96.83 65.7
97.91 65.08
3.1 5.48
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Table 3
Further comparison results.

Datasets Cl. Our method Others

Acc. # Method Acc. #

MFEAT SVM 95.0 6 CC-LF 93.92 6
MLP 95.07 93.08
KNN 94.85 93.92

MNIST SVM 82.5 34 CC-BF 73.65 13
MLP 83.49 68.09
KNN 86.26 70.23

OPTODIGIT SVM 92.82 12 CC-LF 90.43 9
MLP 88.87 83.92
KNN 92.43 88.65

NIST SVM 57.88 26 CC-LF 58.95 14
MLP 62.57 64.89
KNN 61.45 62.65

C. De Stefano et al. / Pattern Recognition Letters xxx (2013) xxx–xxx 11
Eq. (6)), and the evolutionary algorithm tends to favor solutions
using a small number of features even if they exhibit a low value
of the separability index. This behavior has been analyzed in Sub-
section 5.2 discussing the set of experiments for finding the opti-
mal value of K.

6. Conclusions

In the framework of handwriting recognition problems, we
have presented a feature selection method for improving classifica-
tion performance. The devised approach uses a GA–based feature
selection algorithm for detecting feature subsets where the sam-
ples belonging to different classes are well discriminated. The pro-
posed method does not require that the dimensionality of the
searched subspace is a priori fixed. Candidate feature subsets are
evaluated by means of a novel evaluation function based on the
Fisher linear discriminant. Such evaluation function uses covari-
ance matrices for estimating how the probability distributions of
patterns are spread out in the considered representation space.
Moreover, in order to balance the effects of the monotonic trend
of the evaluation function, a further term, suitable weighted, has
been added which takes into account the cardinality of the sub-
space to be evaluated. The experiments have been performed by
using four standard databases and the solutions found have been
tested with different classification methods. The results have been
compared with those obtained by using the whole feature set and
with those obtained by using standard feature selection algo-
rithms. The comparison outcomes confirmed the effectiveness of
our approach.

From the experimental results we can also draw the following
observations:

1. The choice of an appropriate value for the constant K is not crit-
ical. In fact, the trend of the recognition rate as a function of K is
nearly constant for a wide range of K values and, starting from a
certain point, it rapidly decreases. This behavior allows us to
easily identify an appropriate range of values for K. More specif-
ically, in application for which it is mandatory to maximize per-
formance, the value of K corresponding to the highest
recognition rate will be chosen. On the contrary, if we can
accept a slight performance decrease, values of K corresponding
to a lower number of features may be chosen.

2. The accuracy gain obtained by our method with respect to the
compared methods justifies the computational time required
by the feature selection algorithm proposed.

3. The separability index assumes that class distributions are nor-
mal. Even if this assumption is difficult to verify for real data, it
represents a reasonable and a widely used approximation.
Moreover, the results obtained on different datasets seems to
Please cite this article in press as: De Stefano, C., et al. A GA-based feature sele
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prove that this assumption does not negatively affect the
obtainable performance in handwriting recognition
applications.

Finally, it is worth noting that the proposed approach also
shows the following interesting properties: (i) it is independent
of the classification system used (ii) its computational time is inde-
pendent of the training set size.

The second property derive from the fact that we have used the
training set only for computing, once and forever, the covariance
matrices Rk (k ¼ 1; . . . ; C), the mean vectors ~lk (k ¼ 1; . . . ;C) and
the overall mean vector ~l0. These information are needed for com-
puting the within-class and the between-class scatter matrices RW

and RB. This property is another consequence of the adopted filter
approach, which makes our method suitable when large datasets
are taken into account.
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