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Abstract—This paper studies the distributed coordination of
networked fractional-order systems over a directed interaction
graph. A general fractional-order coordination model is intro-
duced by summarizing three different cases: 1) fractional-order
agent dynamics with integer-order coordination algorithms;
2) fractional-order agent dynamics with fractional-order coor-
dination algorithms; and 3) integer-order agent dynamics with
fractional-order coordination algorithms. We show sufficient con-
ditions on the interaction graph and the fractional order such
that coordination can be achieved using the general model. The
coordination equilibrium is also explicitly given. In addition, we
characterize the relationship between the number of agents and
the fractional order to ensure coordination. Furthermore, we com-
pare the convergence speed of coordination for fractional-order
systems with that for integer-order systems. It is shown that the
convergence speed of the fractional-order coordination algorithms
can be improved by varying the fractional orders with time.
Finally, simulation results are presented as a proof of concept.

Index Terms—Consensus, coordination, directed graph,
fractional-order systems, multiagent systems.

I. INTRODUCTION

COORDINATION of multiagent systems has numerous
applications. Examples include rendezvous, flocking, for-

mation stabilization, and sensor networks. Distributed coor-
dination aims at achieving collective group behavior through
local interaction. Consensus plays an important role in dis-
tributed coordination. Consensus has an old history [1]–[3].
In the literature, consensus denotes the agreement of a group
faced with decision-making situations. As for a group behavior,
sharing information with each other or consulting more than
one expert, as stated in [1], makes the decision makers more
confident.

A. Related Work

In the control community, consensus algorithms have exten-
sively been studied. The objective is to reach an agreement on
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information states, including positions, velocities, and attitudes,
via local interaction. Consensus algorithms have applications
in rendezvous, formation control, and sensor networks. For
systems with single-integrator dynamics, consensus algorithms
have been studied in both continuous-time and discrete-time
settings (see [4] and references therein). Because many vehicles
are modeled by double-integrator dynamics, consensus algo-
rithms for double-integrator dynamics are studied in [5]–[10],
to name a few.

Fractional calculus can be dated back to the seventeenth
century [11]. Fractional calculus studies fractional derivatives,
fractional integrals, and their properties. Different from the inte-
ger orders of derivatives and integrals in conventional calculus,
the orders of derivatives and integrals in fractional calculus are
real numbers. The foundations of fractional calculus were laid
on [12]–[14]. With the development of fractional calculus, its
applications were also studied by researchers from different
disciplines [15], [16]. Examples include the study of the for-
mation of particulate aggregates [17] and the study of motion
of objects in viscoelastic materials [18]–[20]. In particular,
fractional calculus was also introduced into the engineering
community to design a CRONE controller [21] and synthesize
control systems [22], to name a few.

In addition, fractional dynamics were also presented and
studied from different perspectives. The authors in [23] mod-
eled the dynamics of self-similar protein in a fractional-order
sense because the relaxation processes and the reaction kine-
matics of proteins deviated from the exponential behavior.
In [24], the fractional-order dynamics of international com-
modity prices were demonstrated from the commodity price
series. In [25] and [26], the authors studied the fractional-order
proportional-integral differential (PID) controllers, which show
better performance when used for the control of fractional-
order systems than the classical PID controllers. The authors
in [27] demonstrated that fractional equations have become a
complementary tool in the description of anomalous transport
processes in complex systems.

B. Motivation of This Paper

Many phenomena in nature cannot be explained in the frame-
work of integer-order dynamics, for example, the synchronized
motion of agents in fractional circumstances, such as macro-
molecule fluids and porous media. Under these circumstances,
the stress–strain relationship demonstrates non–integer-order
(i.e., fractional-order) dynamics rather than integer-order dy-
namics, as shown in [18]–[20]. In addition, many other phe-
nomena can naturally be explained by the coordinated behavior
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of agents with fractional-order dynamics. Examples include
chemotaxis behavior and food seeking of microbes and collec-
tive motion of bacteria in lubrications perspired by themselves
[28], [29]. Similarly, engineered systems often demonstrate
fractional-order dynamics either because the environments in
which they are operated are complex or because the system
dynamics can more accurately be modeled by fractional-order
differential equations than integer-order differential equations.
Examples include underwater vehicles operating in lentic lakes
composed of microbes and viscoelastic materials, flying ve-
hicles operating in an environment where the influence of
particles in air cannot be ignored (e.g., high-speed flight in
duststorm, rain, or snow), and ground vehicles moving on top
of carpet, sand, muddy road, or grass. In addition, friction in
many real-world applications takes in the form of a fractional-
order model instead of an integer-order model.

Motivated by the broad application of coordination algo-
rithms in multivehicle systems and the fact that many practical
vehicles demonstrate fractional dynamics, we study coordina-
tion algorithms for networked fractional-order systems in this
paper. To the best of our knowledge, this paper is the first
paper that studies the distributed coordination of networked
fractional-order systems.

C. Contribution of This Paper

The contribution of this paper is as follows. First, the coor-
dination for integer-order dynamics is extended to fractional-
order dynamics. The existing coordination algorithms for
integer-order dynamics can be considered a special case of
fractional-order coordination algorithms. Second, we study the
conditions on the interaction graph and the fractional order such
that coordination can be achieved for networked fractional-
order systems. We also characterize the relationship between
the number of agents and the fractional order to ensure coordi-
nation. Third, an alternative to improve the convergence speed
is presented by applying a varying-order coordination strategy.

D. Organization of This Paper

The remainder of this paper is organized as follows. In
Section II, graph theory notions and the Caputo fractional
operator are introduced. The main results on coordination for
fractional-order systems are presented in Section III. Then, the
comparison between coordination for integer-order systems and
fractional-order systems is given in Section IV. Finally, simu-
lation results and a short conclusion are given in Sections V
and VI, respectively. A preliminary version of this paper has
appeared in [30].

II. PRELIMINARY

In this section, we introduce graph theory notions and the
Caputo fractional operator, which serve as a basis for the
following several sections.

A. Graph Theory Notions

For a system with n agents, the interaction graph for all
agents can be modeled by a directed graph G = (V,W), where

V = {v1, v2, . . . , vn} and W ⊆ V2 represent the agent set and
the edge set of the graph, respectively. Each edge can be
denoted as (vi, vj), which means agent j can access the state
information of agent i. Accordingly, agent i is a neighbor of
agent j. All neighbors of agent i are denoted by Ni. A directed
path is a sequence of edges in a directed graph with the form
(v1, v2), (v2, v3), . . ., where vi ∈ V . A directed graph has a
directed spanning tree if there exists at least one agent that has
a directed path to all the other agents.

The interaction graph can be represented by two types of ma-
trices: 1) the adjacency matrix A = [aij ] ∈ R

n×n with aij > 0
if (vj , vi) ∈ W and aij = 0 otherwise, and 2) the (nonsymmet-
ric) Laplacian matrix L = [�ij ] ∈ R

n×n with �ii =
∑

j∈Ni
aij

and �ij = −aij , i �= j. It is straightforward to verify that L has
at least one zero eigenvalue with a corresponding eigenvector 1,
where 1 is an all-one column vector with a compatible size.

Lemma 1 [31], [32]: For a fixed interaction graph, L has a
simple zero eigenvalue with an associated eigenvector 1, and
all the other eigenvalues have positive real parts if and only if
the interaction graph has a directed spanning tree.

B. Caputo Fractional Operator

There are mainly two widely used fractional operators:
Caputo and Riemann–Liouville (R–L) fractional operators [16].
In physical systems, the Caputo fractional operator is more
practical than the R–L fractional operator because the R–L
fractional operator has initial value problems. Therefore, we
will use the Caputo fractional operator in this paper to model
the system dynamics and analyze the stability of the proposed
fractional-order algorithms. In the following section, we will
review the Caputo fractional operator. Generally, the Caputo
fractional operator includes Caputo integral and Caputo deriv-
ative. The Caputo derivative is defined based on the following
Caputo integral:

C
a D−α

t f(t) =
1

Γ(α)

t∫
a

f(τ)
(t − τ)1−α

dτ

where C
a D−α

t denotes the Caputo integral with order α ∈ (0, 1],
Γ(·) is the Gamma function, and a is an arbitrary real number.
For any real number p, the Caputo derivative is defined as

C
a Dp

t f(t) = C
a D−α

t

[
d[p]+1

dt[p]+1
f(t)

]
(1)

where α = [p] + 1 − p ∈ (0, 1], and [p] is the integer part of p.
If p is an integer, then α = 1, and (1) is equivalent to the integer-
order derivative. Because only the Caputo fractional operator is
used in this paper, a simple notation f (α)(t) is used to replace
C
a Dα

t f(t).
In the following, we will introduce the Laplace transform

of the Caputo derivative and the Mittag–Leffler function [33],
which will be used to, respectively, analyze the algorithms
proposed in Section III and make a comparison between coor-
dination for fractional-order systems and integer-order systems
in Section IV. We first introduce the Laplace transform of the
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Caputo derivative. Let L{·} denote the Laplace transform of a
function. It follows from the formal definition of the Laplace
transform F (s) = L{f(t)} =

∫ ∞
0− e−stf(t)dt that

L
{

f (α)(t)
}

=

⎧⎨
⎩

sαF (s) + sα−1f(0−), α ∈ (0, 1]
sαF (s) + sα−1f(0−)

+sα−2ḟ(0−), α ∈ (1, 2]

where f(0−) = lim
ε→0−

f(ε), and ḟ(0−) = lim
ε→0−

ḟ(ε). We then

introduce the Mittag–Leffler function, which is a function
frequently used in the solutions of fractional-order systems, as
shown in Section IV. For α, β ∈ C, the Mittag–Leffler function
in two parameters is defined as

Eα,β(z) =
∞∑

k=0

zk

Γ(kα + β)
. (2)

When β = 1, and α > 0, (2) can be written in a special case as

Eα(z) =
∞∑

k=0

zk

Γ(kα + 1)
. (3)

III. STABILITY ANALYSIS OF COORDINATION

ALGORITHMS FOR FRACTIONAL-ORDER SYSTEMS

In this section, we derive the conditions on the interaction
graph and the fractional order such that the coordination for
fractional-order systems is achieved over a directed fixed in-
teraction graph. To study this problem, we introduce a general
model of coordination for fractional-order systems by summa-
rizing the following three different cases.

Case (i): Fractional-order agent dynamics with an integer-
order coordination algorithm: Assume that the
agent dynamics are

x
(α)
i (t) = ui(t) (4)

where xi(t) and ui(t) represent, respectively, the
state and the control input for the ith agent, and
x

(α)
i (t) is the αth derivative of xi(t) with α ∈

R
+.1 An integer-order coordination algorithm is

given by

ui(t) =
∑
j∈Ni

aij {[xj(t) − δj ] − [xi(t) − δi]} (5)

where aij is the (i, j)th entry of the adjacency
matrix A, Ni denotes the neighbor set of agent i,
and δi is a constant.

Case (ii): Integer-order agent dynamics with a fractional-
order coordination algorithm: Assume that the
agent dynamics are given by ẋi(t) = ui(t), where

1For a given system, α is fixed.

xi(t) and ui(t) are defined as in (4). A fractional-
order coordination algorithm is given by

ui(t) =
∑
j∈Ni

aij

{
[xj(t) − δj ]

(β) − [xi(t) − δi]
(β)

}
(6)

where β ∈ R
−, and aij , Ni, and δi are defined as

in (5).
Case (iii): Fractional-order agent dynamics with a fractional-

order coordination algorithm: Assume that the
agent dynamics are given by (4). A fractional-
order coordination algorithm is given by (6).

Define δij
Δ= δi − δj . The objective of the algorithm in each

case is to guarantee coordination, i.e., xi(t) − xj(t) → δij as
t → ∞ for any initial xi(0) and xj(0). Note that integer-order
dynamics [i.e., α is an integer in (4)] is a special case of
fractional-order dynamics. The existing consensus algorithm
for single-integrator dynamics (e.g., [32], [34], [35]) corre-
sponds to a special case of Case (i) when α = 1 in (4) and
δij = 0 in (5).

When applying the Caputo derivative to (4) and (6), it follows
that Cases (ii) and (iii) can be written as Case (i) by applying the
fractional operator C

a D−β
t on both sides of the corresponding

system. Therefore, the model in Case (i) can be considered a
general model. In the following, we focus on Case (i). For an
n-agent system, using (5), (4) can be written in matrix form as

X̃(α)(t) = −LX̃(t) (7)

where X̃(t) = [x̃1(t), x̃2(t), . . . , x̃n(t)]T ∈ R
n with x̃i(t) =

xi(t) − δi, and L is the (nonsymmetric) Laplacian matrix.
Although the dynamics for a given system are fixed, α in the
general model (7) can be changed by choosing coordination
algorithms with different fractional orders.

Note that L can be written in Jordan canonical form as

L = P

⎡
⎢⎣

Λ1 0 · · · 0
0 Λ2 · · · 0
· · · · · ·
0 0 · · · Λk

⎤
⎥⎦

︸ ︷︷ ︸
Λ

P−1

where Λm, m = 1, 2, . . . , k, are standard Jordan blocks. With-
out loss of generality, let the initial time a = 0. By defining

Y (t) Δ= P−1X̃(t), (7) can be written as

Y (α)(t) = −ΛY (t). (8)

Suppose that the diagonal entry of Λi is λi (i.e., an eigen-
value of L). Noting that the standard Jordan block Λi =⎡
⎢⎣

λi 1 · · · 0
0 λi · · · 0
· · · · · ·
0 0 · · · λi

⎤
⎥⎦, it follows that (8) can be decoupled into

n one-dimensional equations represented by either

y
(α)
i (t) = −λiyi(t) (9)
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for the equation corresponding to Λi, which has dimension
equal to 1, or the last equation corresponding to Λi, which has
dimension larger than 1, or

y
(α)
i (t) = −λiyi(t) − yi+1(t) (10)

otherwise, where yi(t) is the ith component of Y (t).
Before deriving the main result, we need the following two

lemmas.
Lemma 2: When Re(λi) ≥ 0, where Re(·) denotes the real

part of a complex number, the solution of (9) has the following
properties.

1) When α ∈ (0, (2θi/π)), and Re(λi) > 0, lim
t→∞ yi(t) → 0

as t → ∞, where θi = π − arg{λi}, with arg{λi} denot-
ing the phase of λi.2

2) When α ∈ (0, 1], and λi = 0, yi(t) ≡ yi(0) ∀t.
3) When α ∈ (1, 2), and λi = 0, yi(t) = yi(0) + ẏi(0)t.
4) When α ∈ (2,∞), the system is not stable.

Proof: (Proof of Property 1) By taking the Laplace trans-
form of (9), it can be computed from the Laplace transform of
L{f (α)(t)} in Section II-B that

L{yi(t)}=
yi(0−)sα−1

sα + λi
, α ∈ (0, 1] (11)

L{yi(t)}=
yi(0−)sα−1 + ẏi(0−)sα−2

sα + λi
, α ∈ (1, 2). (12)

From (11) and (12), it can be seen that the denominator of
L{yi(t)} is sα + λi when α ∈ (0, 2). To ensure that all the
poles of L{yi(t)} are in the open left half plane (LHP),
it follows from the discussion in [36] that α ∈ (0, (2(π −
arg{λi})/π)), that is, α ∈ (0, (2θi/π)), where (2θi/π) > 1
because Re(λi) > 0, i.e., arg{λi} ∈ (−(π/2), (π/2)). In par-
ticular, when λi ∈ R

+, α ∈ (0, 2) because arg{λi} = 0.
(Proof of Properties 2 and 3) The proofs of Properties 2

and 3 follow from [16].
(Proof of Property 4) See [33]. �
Lemma 3: Assume that continuous function yi+1(t) sat-

isfies lim
t→∞ yi+1(t) = 0. When Re(λi) > 0 [i.e., arg{λi} ∈

(−(π/2), (π/2))], and α ∈ (0, (2θi/π)), where θi = π −
arg{λi}, the solution of (10) satisfies lim

t→∞ yi(t) = 0.

Proof: When α ∈ (0, 1], by taking the Laplace transform
of (10), it can be computed from the Laplace transform of
L{f (α)(t)} that

L{yi(t)} =
sα−1yi(0−) − L{yi+1(t)}

sα + λi
. (13)

It follows from the proof of Property 1 in Lemma 2 that the
poles of (13) are in the open LHP when α ∈ (0, 1]. By applying
the final value theorem of the Laplace transform, we have

lim
t→∞ yi(t) = lim

s→0
sL{yi(t)}

= lim
s→0

sαyi(0−) − sL{yi+1(t)}
sα + λi

= 0

2We follow the convention that arg{x} ∈ (−π, π] for x ∈ C.

where we have used the fact sL{yi+1(t)} = 0 to derive the last
equality because lim

t→∞ yi+1(t) = 0.

When α ∈ (1, (2θi/π)), it follows from the proof of
Property 1 in Lemma 2 that the poles of (13) are also in the
open LHP. By taking the Laplace transform of (10), it can be
computed from the Laplace transform of L{f (α)(t)} that

L{yi(t)} =
sα−1yi(0−) + sα−2ẏi(0−) − L{yi+1(t)}

sα + λi
. (14)

Following a similar discussion for α ∈ (0, 1] gives
lim
t→∞ yi(t) = 0.

Combining the foregoing arguments proves the lemma. �
Based on Lemmas 2 and 3, we next study the conditions

on the fractional order α and the interaction graph such that
coordination can be achieved.

Theorem 1: Let λi be the ith eigenvalue of L, and θ =
min

λi �=0,i=1,2,...,n
θi, where θi = π − arg{λi}. For the fractional-

order system [see (7)], coordination is achieved if the fixed in-
teraction graph has a directed spanning tree and α ∈ (0, 2θ/π).
When α ∈ (0, 1], the solution of (7) satisfies x̃i(t) → x̃j(t) →
pT X̃(0), i.e., xi(t) − xj(t) → δij as t → ∞, where p is the
left eigenvector of L associated with the zero eigenvalue sat-
isfying pT 1 = 1. When α ∈ (1, 2θ/π), the solution of (7)

satisfies x̃i(t) → x̃j(t) → pT X̃(0) + pT ˙̃X(0)t and ˙̃xi(t) →
˙̃xj(t) → pT ˙̃X(0), i.e., xi(t) − xj(t) → δij , as t → ∞.

Proof: Noting that the interaction graph has a directed
spanning tree, it follows from Lemma 1 that L has a simple zero
eigenvalue, and all other eigenvalues have positive real parts.
Without loss of generality, let λ1 = 0, and Re(λi) > 0, i �= 1.
When α ∈ (0, 1], because λ1 = 0 is a simple zero eigenvalue,
λ1 satisfies (9). It follows from Property 2 in Lemma 2 that
y1(t) ≡ y1(0). When λi, i �= 1, satisfies (9), it follows from
Property 1 in Lemma 2 that lim

t→∞ yi(t) = 0, i �= 1. When λi,

i �= 1, satisfies (10), it follows from Lemma 3 that lim
t→∞ yi(t) =

0, i �= 1, as well because yi+1(t) also satisfies either (9) or
(10), which implies lim

t→∞ yi+1(t) = 0. Combining the foregoing

arguments gives lim
t→∞Y (t) = [y1(0), 0, . . . , 0]T , i �= 1, which

implies lim
t→∞ X̃(t) = lim

t→∞PY (t) = PSY (0) = PSP−1X̃(0),

where S = [sij ] ∈ R
n×n has only one nonzero entry s11 = 1.

Note that the first column of P can be chosen as 1, whereas
the first row of P−1 can be chosen as p by noting that 1
and p are, respectively, a right and left eigenvector of L
associated with λ1 = 0 and pT 1 = 1. Therefore, lim

t→∞ X̃(t) =

PSP−1X̃(0) = 1pT X̃(0), that is, lim
t→∞ x̃i(t) = pT X̃(0). This

implies that xi(t) − xj(t) → δij as t → ∞.
When α ∈ (1, (2θ/π)), similar to the previous discussion for

α∈(0, 1], λ1 satisfies (9). It follows from Property 3 in Lemma 2
that y1(t) = y1(0) + ẏ1(0)t. Because Re(λi) > 0, i �= 1, sim-
ilar to the previous discussion for α ∈ (0, 1], it follows from
Property 1 in Lemmas 2 and 3 that lim

t→∞ yi(t) = 0, i �= 1. There-

fore, it follows that lim
t→∞Y (t) = [y1(0) + ẏ1(0)t, 0, . . . , 0]T ,

which implies that lim
t→∞ Ẏ (t) = [ẏ1(0), 0, . . . , 0]T . Similar to
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Fig. 1. Mittag–Leffler functions and the derivatives. (a) Mittag–Leffler functions with different orders. (b) Derivatives of Mittag–Leffler functions with different
orders.

the proof for α ∈ (0, 1], it directly follows that lim
t→∞ x̃i(t) =

pT X̃(0) + pT ˙̃X(0)t, and lim
t→∞

˙̃xi(t) = pT ˙̃X(0). This implies

that xi(t) − xj(t) → δij as t → ∞.
Combining the previous arguments for α ∈ (0, 1] and α ∈

(1, 2θ/π) proves the theorem. �
As a special case, when the fixed interaction graph is undi-

rected, we can obtain the following result.
Corollary 1: Assume that the fixed interaction graph is

undirected. For the fractional-order system [see (7)], coordi-
nation is achieved if the interaction graph is connected and
α ∈ (0, 2). The coordination equilibria when α ∈ (0, 1] and
α ∈ (1, (2θ/π)) are the same as those in Theorem 1.

Proof: When the undirected interaction graph is con-
nected, it follows that there is a simple zero eigenvalue, and
all the other eigenvalues are positive, which implies that θ = π.
The statements then follow from the proof in Theorem 1. �

From Theorem 1, it can be seen that the range of the frac-
tional order α is determined by θ. Note that θ is closely related
to the eigenvalues of L, which are also related to the number
of agents. In the following, we characterize the relationship
between α and the number of agents to ensure coordination.

Theorem 2: Assume that there are n agents with n ≥ 2.
For the fractional-order system [see (7)], coordination can be
achieved if the fixed interaction graph has a directed spanning
tree and α ∈ (0, 1 + (2/n)).

Proof: Letting λi be the ith eigenvalue of L, it follows
from [37] that arg{λi} ∈ [−(π/2) + (π/n), (π/2) − (π/n)]
for all λi �= 0, which implies (2θ/π) ≥ 1 + (2/n). Therefore,
the statement apparently holds for Theorem 1. �

Remark 1: From Theorem 1, it can be seen that the final
coordination equilibrium of (7) for α ∈ (0, 1] is the same as
that of

˙̃X(t) = −LX̃(t) (15)

under the same L.
Remark 2: From Theorem 2, when there exist more agents

in a team (i.e., n becomes larger), α has to be chosen smaller
to ensure coordination. As n → ∞, 2θ/π → 1, i.e., α ∈ (0, 1],

which implies that the coordination property for systems with
single-integrator dynamics does not depend on n.

IV. COMPARISON BETWEEN COORDINATION FOR

FRACTIONAL-ORDER SYSTEMS AND

INTEGER-ORDER SYSTEMS

In this section, we compare the coordination for fractional-
order systems with that for integer-order systems. Based on
the comparison, we propose a varying-order fractional-order
coordination strategy to achieve higher convergence speed.
Before moving on, we first derive the solutions of (9) and (10).

For α ∈ (0, 1], the Laplace transform of (9) is (11). Taking
the inverse Laplace transform of (11) gives

yi(t) = yi(0−)Eα(−λit
α)

where Eα(·) is the Mittag–Leffler function defined in (3).
Similarly, for α ∈ (1, 2), the Laplace transform of (9) is (12).
Taking the inverse Laplace transform of (12) gives

yi(t) = yi(0−)Eα(−λit
α) + ẏi(0−)tEα,2(−λit

α)

where Eα,2(·) is the Mittag–Leffler function defined in (2).
For α ∈ (0, 1], the Laplace transform of (10) is (13). Taking

the inverse Laplace transform of (13) gives

yi(t) = yi(0−)Eα(−λit
α) − yi+1(t) ∗

[
tα−1Eα,α (−λit

α)
]

where ∗ denotes the convolution operation. Similarly, for α ∈
(1, 2), the Laplace transform of (10) is (14). Taking the inverse
Laplace transform of (14) gives

yi(t) = yi(0−)Eα(−λit
α) + ẏi(0−)tEα,2(−λit

α)

− yi+1(t) ∗
[
tα−1Eα,α (−λit

α)
]
.

It can be observed from these solutions that the decaying
speeds of Mittag–Leffler functions determine the speed at
which yi(t), where Re(λi) < 0, approaches zero. As a result,
it follows that the convergence speed of (7) is also determined
by the decaying speeds of Mittag–Leffler functions due to the
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fact shown in the proof of Theorem 1 that coordination is
achieved if yi(t) = 0 for all λi �= 0. As a special case, for
single integer-order systems (i.e., α = 1), (7) becomes (15), and
the corresponding solution is X̃(t) = e−LtX̃(0). Similarly, the
solution for high integer-order systems (i.e., α = 2, 3, . . .) can
also be written in the form of exponential functions. Therefore,
it is worthwhile to study the difference between Mittag–Leffler
functions and exponential functions to compare coordination
for fractional-order dynamics and that for integer-order dy-
namics. As an example, we next study the decaying speeds
of the Mittag–Leffler function Eα(−λtα) and the exponential
function e−λt.

Theorem 3: There exists a positive scalar T such that
Eα(−λtα) decreases faster than e−λt for t ∈ (0, T ), where
λ ∈ R

+, and α ∈ R
+.

Proof: Note that both e−λt and Eα(−λtα) are
equal to 1 when t = 0. Taking the derivatives of both
functions gives (d/dt)[e−λt]|t=0 = −λe−λt|t=0 = −λ, and
(d/dt)[Eα(−λtα)]|t=0 = −∞. Because (d/dt)[e−λt] and
(d/dt)[Eα(−λtα)] are continuous with respect to t, there
exists a positive scalar T such that Eα(−λtα) decreases faster
than e−λt for t ∈ (0, T ) by using the comparison principle. �

To illustrate, Fig. 1(a) and (b) shows, respectively, the
Mittag–Leffler functions and their derivatives with different
orders for λ = 1. Fig. 1(a) shows the Mittag–Leffler functions
when α = 0.2i, i = 1, 2, 3, 4, 5.3 A noticeable phenomenon
in Fig. 1(a) is that the smaller α is, the faster the decaying
speed will be when the time is close to 0. Fig. 1(b) shows
the derivatives of the Mittag–Leffler functions for α = 0.2i,
i = 1, 2, 3, 4, 5. Note that Fig. 1(a) and (b) verified Theorem 3.
Because the decaying speeds of the Mittag–Leffler functions
with different fractional orders are different, as shown in Fig. 1,
we are motivated to adopt a varying-order fractional-order
coordination strategy to increase the convergence speed.

Remark 3: To achieve a higher convergence speed, a
varying-order fractional-order coordination strategy can be
adopted. The strategy can be described as follows. Let α1 <
· · · < αm < 1, and choose α in (7) as

α =

{α1, t < t1
αi, ti−1 ≤ t < ti; i = 2, . . . , m
1, t ≥ tm.

Here, t1 is chosen such that the convergence speed with order
α1 is the highest when t < t1. Similarly, ti, i = 2, . . . , m,
is chosen such that the convergence speed with order αi is
highest for t ∈ [ti−1, ti), and α = 1 if t ≥ tm. Given the same
L, the convergence speed of this varying-order fractional-order
coordination strategy is higher than that of the single-integrator
coordination strategy because the convergence speed of the
proposed strategy is higher than that of the single-integrator
coordination strategy when t < tm and equal to that of the
single-integrator coordination strategy when t ≥ tm.

Remark 4: The convergence speed for fractional-order sys-
tems can be increased by applying a varying-order fractional-
order coordination strategy. Similarly, the convergence speed

3When α = 1, the corresponding Mittag–Leffler function becomes the ex-
ponential function.

Fig. 2. Interaction graph for 12 agents. An arrow from j to i denotes that
agent i can receive information from agent j.

can also be increased by separating the time interval into more
pieces [ti, ti+1).

Remark 5: There should exist an optimal varying-order
fractional-order coordination strategy to maximize the conver-
gence speed, and the order of the corresponding fractional-
order coordination strategy may be continuous with respect to t.
This optimal strategy might be related to the sensitivity function
of Eα(−λtα) with respect to α, i.e., (d/dα)[Eα(−λtα)].

V. SIMULATION ILLUSTRATIONS AND DISCUSSIONS

In this section, several simulation results are presented to
illustrate the fractional-order coordination algorithm proposed
in Section III and the varying-order coordination strategy in
Section IV. We consider a group of 12 agents with an inter-
action graph given by Fig. 2. Note that the interaction graph in
Fig. 2 has a directed spanning tree with node 1 being the root.
Although we only consider 12 agents in our simulation, similar
results can be obtained for a large number of agents if the con-
ditions in Theorem 1 are satisfied. Here, for simplicity, we have
chosen δi = 0, i = 1, . . . , 12, i.e., X̃(t) = X(t), where X(t) =
[x1(t), . . . , x12(t)]T , and X̃(t) = [x̃1(t), . . . , x̃12(t)]T . The
corresponding (nonsymmetric) Laplacian matrix is chosen
such that aij = 1 if (vj , vi) ∈ W , and aij = 0 otherwise. It
can be computed that p = [1/11, 1/11, 1/11, 1/11, 0, 1/11,
1/11, 1/11, 1/11, 1/11, 1/11, 1/11]T and the eigenvalues of
L are 0, 1, 1.9595 ± 0.2817j, 1.6549 ± 0.7557j, 1.1423 ±
0.9898j, 0.5846 ± 0.9096j, and 0.1587 ± 0.5406j, where j is
the imaginary unit.

For α ∈ (0, 1], let the initial states be X(0) =
[6, 3, 1,−3, 4, 2, 0,−5,−2,−5, 2, 7]T . When the fractional
order is α = 0.8, the states using (7) are shown in Fig. 3(a).
It can be seen that coordination is achieved with the final
coordination equilibrium for xi(t) being 0.5455, which is
equal to pT X(0). When α = 1 (i.e., the system takes in the
form of single-integrator dynamics), the states using (7) are
shown in Fig. 3(b). From these two figures, it can be seen that
the equilibrium states for both cases are the same. In addition,
it can also be observed that the convergence speed of the
fractional-order case is higher than that of the single-integrator
case when t is close to the origin.

For α ∈ (1, 2θ/π), we let the initial states be X(0) = [6, 3,
1,−3, 4, 2, 0,−5,−2,−5, 2, 7]T , and Ẋ(0) = [1, 2, 3, 4, 0, 0,
0, 0, 1, 1, 1, 1]T . It follows from the definition of θ in Theorem 1
that θ = 1.8563, which implies that α ∈ (0, 1.182). Fig. 3(c)
and (d) shows the states using (7) for α = 1.15 and α = 1.5,
respectively. From Fig. 3(c), it can be observed that coordina-
tion can be achieved. From Fig. 3(d), it can be observed that
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Fig. 3. Simulation results using (7) with different orders. (a) α = 0.8. (b) α = 1 (|xi(t) − xj(t)| < 0.1 for any t > 22.22 s). (c) α = 1.15. (d) α = 1.5.

coordination cannot be achieved. The four subfigures in Fig. 3
validate Theorem 1.

We next present the simulation results using the varying-
order coordination strategy described in Remark 3 and compare
the simulation results with those using the integer-order coor-
dination strategy in Fig. 3(b). Let the initial states be X(0) =
[6, 3, 1,−3, 4, 2, 0,−5,−2,−5, 2, 7]T . Fig. 4 shows the states
using the varying-order coordination strategy when the parame-
ters in Remark 3 are arbitrarily chosen as αi = 0.4 + 0.1i and
ti = 0.1 + 0.04i for i = 1, 2, 3, 4. Note that |xi(t) − xj(t)| <
0.1 for all t > 21.73 s in Fig. 4, whereas |xi(t) − xj(t)| < 0.1
for all t > 22.22 s in Fig. 3(b). Therefore, we can see that
the convergence speed using the varying-order coordination
strategy is higher than that using the single integer-order coordi-
nation strategy. The comparison shows the effectiveness of the
proposed varying-order coordination strategy. Of course, when
we choose different parameters (αi, ti) carefully as described
in Remark 3, the convergence speed can further be improved.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have studied the coordination algorithms for
networked fractional-order systems when the fixed interaction
graph is directed. The coordination algorithms for integer-
order systems can be considered a special case of those for

Fig. 4. Simulation result using (7) with varying orders (|xi(t) − xj(t)| <
0.1 for any t > 21.73 s).

fractional-order systems by letting the fractional order be in-
teger numbers. First, we presented a general fractional-order
coordination model. Then, sufficient conditions on the inter-
action graph and the fractional order were given to ensure
coordination. In addition, we characterized the relationship
between the fractional order and the number of agents to ensure
coordination. Finally, a varying-order coordination strategy
was proposed to improve the overall convergence speed. In
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physical systems, the interaction among different agents
may be dynamic due to unreliable communication, limited
communication/sensing range, and/or sensing with a limited
field of view. It is, therefore, meaningful to study fractional-
order coordination algorithms under time-varying or switching
interaction. This will be one of our future research directions.
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