
International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 652-664
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 652

Classification and Measurement on C Overflow Vulnerabilities Attack

Nurul Haszeli Ahmad1,2, Syed Ahmad Aljunid
2
, Jamalul-lail Ab Manan

1

1 MIMOS Berhad, TPM Bukit Jalil, 57000 Kuala Lumpur, Malaysia

2 Faculty of Computer Sciences and Mathematics, UiTM, Shah Alam 40000, Selangor, Malaysia
{haszeli.ahmad, jamalul.lail}@mimos.my, aljunid@tmsk.uitm.edu.my

ABSTRACT

Since early 70s, softwarrrre vulnerabilities

have been classified and measured for

various purposes including software

assurance. Out of many software

vulnerabilities, C vulnerabilities are the most

common subject discussed, classified and

measured. However, there are still gaps in

those early works as C vulnerabilities still

exist and reported by various security

advisors. The most common and highly

ranked is C overflow vulnerabilities.

Therefore, we propose this taxonomy, which

classified all existing overflow

vulnerabilities including four vulnerabilities

that have never been classified before. We

also provide a guideline to identified and

avoid these vulnerabilities from source code

perspective. We ensure our taxonomy is

constructed to meet the characteristics of

well-defined taxonomy. We also evaluate

our taxonomy by classifying various

software security advisories and reports

using our taxonomy. As a result, our

taxonomy is complete and comprehensive,

and hence, is a valuable reference to be used

as part of software assurance processes.

KEYWORDS

Taxonomy, Classification, Buffer Overflow,

Source Code Vulnerabilities, Software

Security, Exploitable Vulnerability.

1 INTRODUCTION

Since the first recorded vulnerabilities

exploitation [1], with various protection

and preventive mechanism developed

and enhanced, C vulnerabilities

exploitation is still a huge issues in

software security community [6], [7],

and [8]. From numerous C

vulnerabilities, overflow vulnerabilities

was identified as the most crucial as it is

still the most dominant and ranked with

high severity [9], [10], [11], [15], [16],

[17] and [19]. No doubt that previous

work has significant impact in reducing

C vulnerabilities. However, there are

still improvements needed to eliminate

the issue or at least minimize the

possibility of C vulnerabilities from

occurring.

Through our analysis on works by [2],

[3], [4], [5], [12], [13], and [14], we

conclude that there are three major

categories of improvement; vulnerability

understanding, analysis tool, and

security implementation. For this

purpose, we limit our discussion to

vulnerability understanding since

accurate comprehension on the matter is

crucial to improve analysis tool and

security implementation, as shared by

[18]. In this paper, we synthesize and

construct a taxonomy focusing on C

overflow vulnerabilities since there is no

taxonomies addressing C overflow

vulnerabilities from source code

perspective. We also describe each

behavior, structure, and rules to find and

avoid these vulnerabilities. In addition,

we also construct experiments to verify

the possibility of these vulnerabilities to

mailto:jamalul.lail%7d@mimos.my
mailto:aljunid@tmsk.uitm.edu.my

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 652-664
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 653

occur in current operating system i.e.

Windows XP and Windows Seven.

2 PREVIOUS WORKS

Various taxonomies have been

constructed and presented ranging from

numerous perspectives, scopes and

purposes. Despite differences, those

taxonomies share the same objective; to

minimize exploitable software

vulnerabilities. [18], [19], [20], [21],

[22], [23], [24], [25], [26], [28], and [29]

presented general vulnerability

taxonomies whereas [2], [3], [4], [32],

and [33] focused on C overflow

vulnerabilities.

While those past works on taxonomies

have significant impact in reducing

vulnerabilities and exploitation, renown

security institutes and corporations [8],

[10], and [11] continue issuing reports

and advisories on C overflow

vulnerabilities, signifying breaches for

exploratory discovery to aim for superior

community comprehension of C

overflows vulnerabilities. Most of these

taxonomies were subsequently reviewed

and analyzed, as done by [30]. Our work

however focuses on C overflows

vulnerabilities. As such, taxonomies that

do not enclose or discuss C overflow

vulnerabilities are ignored. Table 1

summarized our study on previous

taxonomies focusing on types of C

overflow vulnerabilities.

Table 1. Summary of Previous Vulnerabilities

Taxonomies

Auth

or

Type of C Overflows Vulnerabilities

U

F

A

O

I

O

RI

L

M

F

F

P

VT

C

P

S

U

V

N

T

[31] Ø √ × × × × × × × ×
[21] × √ × × × × × × × ×
[26] Ø √ √ × Ø √ × × √ √
[27] ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈

Auth

or

Type of C Overflows Vulnerabilities

U

F

A

O

I

O

RI

L

M

F

F

P

VT

C

P

S

U

V

N

T

[33] Ø √ √ × × × × × × ×
[32] Ø √ √ × × × × × × ×
[4] Ø √ × × × × × × × ×
[3] Ø √ × × × × × × × ×
[2] Ø √ × × × × × × × ×

* Notation

UF – Unsafe Function

AO – Array Out-of-

bound

IO – Integer Overflow

RIL – Return-Into-LibC

MF – Memory Function

FP – Function Pointer /

Pointer Aliasing

VTC – Variable Type

Conversion

PS – Pointer Scaling /

Mixing

UV – Uninitialized

Variable

NT – Null Termination

Ø – Partially

Classified

√ - Classified

× - Not Classified

≈ - Generally mention

As shown in Table 1, we discover four

new types of overflow vulnerabilities

necessitate classification i.e. Unsafe

Function, Return-Into-LibC, Memory

Function and Variable Type Conversion.

We do not consider Pointer

Scaling/Mixing as new overflow

vulnerabilities type as it was classified in

Function Pointer/Pointer Aliasing group

by [26]. However, in our taxonomy, we

separate those two due to different

behavior and method used to identify the

types and it is further explained in

section 3.8.

3 TAXONOMY OF C OVERFLOW

VULNERABILITIES ATTACK

We evaluate sets of vulnerabilities

advisories and exploitations reports since

1988 until 2011. There are more than

50000 reported cases of C overflow

vulnerabilities originating from five

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 652-664
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 654

vulnerabilities databases and malware

collection sites [9], [34], [6], [7], and

[35].

From these reports, we classify types of

C overflow vulnerabilities into ten

categories. Four of them are new and

still unclassified. These are unsafe

functions, return-into-libc, memory

functions and variable type conversion.

They have at least a medium level of

severity, possibility to appear and

exploited [6], [7], and [9]. The impact of

exploitation with unsafe function is

recognized as the most dangerous and

outstanding [9], [34], [6], [7], and [35].

Figure 1 visualizes the new taxonomy of

overflow vulnerability attack, organized

in accordance to its severity, dominance,

potential occurrence and impact. This

taxonomy simplifies the understanding

on implications of each types, their

behavior and preventive mechanisms.

Figure 1. Proposed Taxonomy for Overflow

Vulnerabilities Attack in C

3.1 Unsafe Functions

Although unsafe functions have been

exploited since 1988 [1], [15], 17], it is

still relevant. More importantly, this

well-known and well-documented

inherent C security vulnerability is

categorized as the most critical software

vulnerabilities to continue to dominate C

vulnerabilities report [6], [7], [35] and

[39]. This implies that there are software

developers who are either ignorant,

unaware, or simply bypass software

security policies for prompt development

[15], [16]. Below is a sample of unsafe

functions vulnerability.

Part of a program showing scanf() vulnerability.

 …
 char str[20];

 char str2[10];

 scanf("%s",&str);

 scanf("%s",&str2);

 …

By supplying an input greater than the

allocated size at the first scanf(), it

automatically overflows the seconds

variable and force the program to skip

the second scanf(). This is one of many

unsafe functions in C [12], [15], [16],

[17], [36], [37] and [38]. Previous

taxonomies classified few unsafe

functions as Format String Attack, Read-

Write, or Buffer-Overrun [2], [3], [15].

This is arguable since there are unsafe

functions that do not implement

formatting or require specifying index

for reading or writing.

To prevent overflows via unsafe

functions, one needs to check input

variable before passing into any unsafe

functions. Alternatively, there is C

library safe functions that developers can

use to avoid this type of overflow [17],

[37].

3.2 Array Out-of-bound

Array Out-of-bound overflow can be

triggered by misuse or improper

handling of an array in a read or write

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 652-664
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 655

operation, irrespective of it being above

upper or below lower bound. A true

sample is shown below.

A section from linux driver code in i810_dma.c

contains the vulnerability [40], [41].

if(copy_from_user(&d, arg,

sizeof(arg)))

return –EFAULT;

if(d.idx > dma->buf_count)

return –EINVAL;

buf = dma->buflist[d.idx];

//overflow if d.idx == -1

copy_from_user(buf_priv-

>virtual, d.address, d.used);

As shown in the above sample, when

d.idx contains the value of -1, it will

bypass the conditional statement which

triggers overflow on the following

statement. Array Out-of-bound

overflows is easy to detect and prevent

by monitoring all array processes and

verifying whether the index is within the

range specified; between zeros to less

than one from total array size.

3.3 Integer Range / Overflow

This type of overflow may occur due to

miscalculation or wrong assumption in

an arithmetic operation and is gaining its

popularity in vulnerabilities databases

[42], [43], [44]. The possibility of

exploit is small, but the result of

exploiting it is significantly dangerous

[45].

This classification is attributed from

[26], [32], and [33]. The key difference

is the removal of numerical conversion

as one of the integer overflow type, and

classifies it in a different category. This

is due to its differences in behavior and

code structure. Furthermore, the

conversion errors are dependent on

platform used to execute it. A true

sample from [45] is shown below.

A fraction of C code contains Integer

Range/Overflow vulnerability [45].

nresp = packet_get_int();

if (nresp > 0) {

response =

xmalloc(nresp*sizeof(char*));

for (i = 0; i > nresp; i++)

response[i] =

packet_get_string(NULL);

}

As shown in the above code, if one able

to inject input causing variable nresp to

contain large integer, the operation

xmalloc(nresp*sizeof(char*)) will

possibly trigger overflow, and later can

be exploited [45]. It is difficult to detect

as one needs to understand the logics

and predict possible outcome from the

arithmetic operation. As a result, this

vulnerability tends to be left out

undetected either by analysis tool or

manual code review. This vulnerability

can be avoided by simply restricting the

possible input value before arithmetic

operation took place.

3.4 Return-into-libC

Although it has been recognized as

earlier as unsafe functions [84], it is yet

to be appropriately classified. Many

vulnerabilities databases rank its severity

as high although the number of

occurrence is low. It is difficult to detect

since it can only appear during runtime

and the code itself does not have specific

characteristic to indicate it as vulnerable.

Earlier protection tools such as

ProPolice and StackShield have failed to

detect [46]. It is also difficult to exploit

since ones need to know the exact length

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 652-664
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 656

of character, address of function call,

and address of environment variable.

A sample vulnerable code contains return-into-

libc vulnerability.

int main(char **av)

{

 char a[20];

 if (strlen(av[1]) < 20)

//verified the length

 strcpy(a, av[1]);

//nothing happen

 printf ("%s", a);

//possible have vulnerability

 return 0;

}

Based on the code above, it is possible

to supply a string long enough to fill up

the allocated memory space together

with function call to replace the defined

return address. The result of exploiting it

is extremely dangerous [47]. To

recognize the vulnerability, security

analysts need to understand possible

input values and estimate memory

location. It is similar to Unsafe Function

and Array Out-of-bound class but differ

in terms of behavior and memory

process. Memory in the former two

classes will overflow and overwrite the

return address, resulting in unintended

behavior. In contrast, Return-into-lib

will replace return address with a

function call to another program e.g.

system() and WinExec() [48], [49], [50].

To prevent it from appearing or being

exploited, the contents of the input must

be validated apart from the length.

3.5 Memory Function

Even though it has been in the security

radar as early as 2002 [52], [53], [54],

[55], [56], [57], [58], [59], it is not been

properly classified. This type of

vulnerability has gain notoriety as one of

the preferred vulnerability for

exploitation due to current programming

trend which utilizes dynamic memory

for better performance and scalability.

Double call on free() function, improper

use of malloc(), calloc(), and realloc()

functions, uninitialized memory, and

unused allocated memory are few

examples of memory functions

vulnerabilities. Simple memory function

vulnerability is shown below.

A fragment of C code with free() function

vulnerability.

char* ptr = (char*) malloc

(DEFINED_SIZE);

...

free(ptr); //first call to

free ptr

free(ptr); //vulnerable due

to free the freed ptr

As shown above, the second call to free

the same variable will cause unknown

behavior. This can be used for

exploitation and its severity is equivalent

to the first three types [61], [60].

Due to its safe nature and programming

complexity, it is difficult to assess its

vulnerability potential unless an in-depth

semantics view of program is used.

From coding perspective, this type of

vulnerability can be prevented by

validating the memory before usage,

initializing memory with default value

depending on variable type, and

removing unused memory.

3.6 Function Pointer / Pointer Aliasing

Function pointer or pointer aliasing is a

variable storing address of a function or

as reference to another variable. It can

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 652-664
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 657

later be called by the given pointer name

which assists developer’s flexibility and

ease of programming. It becomes

vulnerable when the reference has been

nullified or overwritten to point to a

different location or function [52], [62],

[63], [64].

It is difficult to detect by manual code

review unless it is done by highly

experience security analysts. However,

using automatic tool requires the tool to

comprehend semantically the code [65].

Below is an example.

An example of pointer aliasing vulnerability.

char s[20], *ptr, s2[20];

ptr = s;

//vulnerable line of code

strncpy(s2, ptr, 20); //

vulnerability realized

As shown above, the pointer ptr is

referring to a null value since the

variable s is yet to be initialized. The

subsequent line of code realizes the

vulnerability, although the function used

is a safe function. The only way to stop

this type of vulnerability from

continuing to occur is by enforcing

validation on pointer variable before

being used throughout the program.

3.7 Variable Type Conversion

Improper conversion of a variable can

create vulnerability and exploitation

[67], [68], [69]. Although there are

considerable numbers of advisories

reporting this vulnerability [67], [70], it

was never mentioned in any earlier

taxonomy. It may be due to infrequent

occurrence and minimal severity. It was

also considered as a member of integer

overflow vulnerability which is arguable

since conversion errors do happen on

other data format. A true example of this

vulnerability is shown below.

Fraction of Bash version 1.14.6 contains

Variable Type Conversion vulnerability [73].

static int yy_string_get() {

 register char *string;

 register int c;

 string =

bash_input.location.string;

 c = EOF;

 if (string && *string) {

 c = *string++;

//vulnerable line

 bash_input.location.string

= string;

 }

 return (c);

}

This vulnerability is proven to be

exploitable [67], [68], [69], [71], and

[72]. Ignoring it is reasonably risky. To

avoid conversion error vulnerability, it is

strongly suggested to validate all

variable involves in conversion, as well

as avoid unnecessary conversion, or use

the same data type.

3.8 Pointer Scaling / Mixing

This vulnerability may arise during an

arithmetic operation of a pointer [74],

[75]. Semantically, it is different to

pointer aliasing in terms of coding. It

seldom happens but the impact of

exploiting it is comparable to other type

of overflow vulnerability.

In a pointer scaling or mixing process,

the size of object pointed will determine

the size of the value to be added [75]. If

one failed to understand this, he or she

may wrongly calculate and assign the

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 652-664
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 658

wrong size of object to accept the result,

and therefore runs the risk of having

overflow vulnerability.

Sample of code contains Pointer Scaling /

Mixing vulnerability [76].

int *p = x;

char * second_char = (char

*)(p + 1);

As shown in the above code, subsequent

read or write to pointer second_char will

cause overflow or unknown behavior

due to addition of value 1 to current

address location of variable x.

To avoid this vulnerability from

occurring, ones must recognize and be

able to correctly determine the accurate

size of recipient variable and actual

location in memory.

3.9 Uninitialized Variable

Uninitialized variable is a variable

declared without value assigned to it.

Nonetheless, computer will allocate

memory and assign unknown values,

which later if being used will cause

computer system to perform undesired

behavior [77], [78], [79]. It can also be

exploited by attackers thus allowing the

system to be compromised [80].

A fraction of C code contains Uninitialized

Variable vulnerability [80].

....

void take_ptr(int * bptr){

 print (“%lx”, *bptr);

}

int main(int argc, char **argv){

 int b;

 take_ptr(&b);

 print (“%lx”, b);

}

Variable b in the sample above was not

initialized and then being used twice

without value assigned to it. By default,

a location has been set in memory and

the next line after declaration will force

either computer system to behave

abnormal or be vulnerable for

exploitation. Normal compiler, code

review, or even most static analysis will

not mark this as vulnerable. There is also

possibility of triggering false alarm if

there is value assign to it before use.

The easiest method to overcome this

vulnerability is to initialize all variable

with acceptable default value such as

zero for numerical type of variable and

empty string or blank space for character

or string. It must not be left uninitialized

or contain null value before used.

Another approach to avoid this

vulnerability which might impact

performance is to validate variable

before usage.

3.10 Null Termination

Although it seem likely to ensue and can

easily be avoided, it still appear in few

vulnerability databases [82] and [83].

The consequence of having this

vulnerability is equally hazardous as

other type of vulnerabilities [81].

Null termination vulnerability is defined

as improper string termination, array that

does not contain null character or

equivalent terminator, or no null byte

termination with possible impact of

causing overflows [52], [54], [81]. A

sample of this vulnerability is shown in

code below.

Fraction of C code contains Null Termination

vulnerability [81].

#define MAXLEN 1024

...

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 652-664
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 659

char *pathbuf[MAXLEN];

...

read(cfgfile,inputbuf,MAXLEN);

strcpy(pathbuf, inputbuf);

The above code which seems safe as the

read() function has limited the size of

input to the same size of destination

buffer on the last line. However, if the

input did not have null termination, due

to behavior of strcpy(), it will continue

to read it until it find a null character.

This makes it possible to trigger an

overflow on the next reading of memory.

Even if it was replaced with strncpy(),

which is considered as safe, the behavior

is still unpredictable, thus making it a

unique vulnerability on its own.

To overcome the vulnerability, one

should validate the input before use, or

restrict the length of input to have less

than one from the actual defined size.

4 TAXONOMY EVALUATIONS

We conduct two experiments to evaluate

our taxonomy effectiveness and

comprehensiveness. For the first

experiment, we select five developers

whom are familiar with C Language and

present our taxonomy to them. Those

five developers were requested to map

security advisories related to C overflow

vulnerabilities with the given taxonomy.

We run the evaluation in three phases. In

the first phase, each developer is given

set of reports and taxonomy and no

explanation given in using the

taxonomy. On phase two, we provide

explanation and guide them using the

same set of reports. On phase three, they

are given a new set of reports. The result

shown in the table below is based on the

last phases of the evaluation.

Table 2. Evaluating Taxonomy for

Effectiveness and Comprehensiveness

Tester Result

No.

Report

S M F SR

1 100 90 4 6 0.9

2 100 78 7 15 0.78

3 100 96 0 4 0.96

4 100 85 8 7 0.85

5 100 92 1 7 0.92

* Notation

S – Successful Mapping

M – Mismatch

F – Failed to match

SR – Successful rate (%)

Based on the result on table 4, it is

concluded that our taxonomy has an

average of 0.882 successful rates in

identifying C overflow vulnerabilities.

The rates can be improved by providing

few samples and detail explanation of

each type of overflow vulnerabilities.

The second experiment was to evaluate

comprehensiveness of our taxonomy and

relevancies as of today environment. Our

scope is limited to 32-bit operating

systems since it is widely used by

computer user compare to 64-Bit which

is mostly used in server environment.

We created few programs for each type

of overflow vulnerabilities and executed

those programs in three types of

operating system. The experiment was

conducted for three times daily for one

week. For this purpose, we used a

personal computer (PC) with 4GB RAM

and processor Intel Pentium Core 2 Duo.

The PC was installed with three

operating system; Windows XP

Professional (Service Pack 3) 32Bit,

Windows 7 Professional 32Bit, and

Linux Centos 5.5 32Bit. Each program

was compiled using compiler MinGW

GCC 32bit. Result of our experiment is

tabularized below.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 652-664
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 660

Table 3. Evaluating Taxonomy for

Comprehensiveness and Relevancies

Overflows Types Result

Windows

XP SP3

Windows

7

Linux

Centos

5.5

Unsafe Functions √ √ √
Array Out-of-

bound
√ √ √

Integer

Range/Overflow
√ √ √

Return-Into-LibC Ø Ø Ø
Memory Function Ø √ Ø
Function Pointer /

Pointer Aliasing
Ø Ø Ø

Variable Type

Conversion
Ø Ø Ø

Pointer Scaling /

Mixing
Ø Ø Ø

Uninitialized

Variable
Ø Ø Ø

Null Termination Ø Ø Ø

* Notation

Ø – Partially Overflow

√ - Overflow

× - No possibility of

overflow

As shown in Table 5, the first three

dominant and severe types of overflow

vulnerabilities are still relevant and have

the possibility of occurring again if there

is no essential action taken to eliminate

those vulnerabilities. This also implies

that although Unsafe Functions, Array

Out-of-bound and Integer Overflow are

common, well-defined vulnerabilities do

exist in various security reports [6], [7],

[35] and [39]. There is still deficient of

security concern among developers.

Added to those, three is Uninitialized

Variable which can be easily avoided if

software developers regard the

importance of initializing variable.

For other types of overflow

vulnerabilities, we consider them as

partial overflow as they are depending

on few conditions such as code

complexity, functions being used and

type of variable used. However, we

cannot ignore the possibility of those

vulnerabilities to appear and thus it is

still relevant until today.

5 SUMMARY OF TAXONOMY ON

C CODE OVERFLOW

VULNERABILITIES ATTACK

We have presented our taxonomy and

briefly explain on each of the categories

in our taxonomy, method to identify and

avoid those vulnerabilities and evaluate

our taxonomy via two experiments. As

summary of our taxonomy, we tabulate

below the types or categories or

overflow vulnerability attacks, technique

it being manipulated or exploited,

method to identify, the severity,

occurrences, and probability of

reappearing. The occurrence and

severity of listed vulnerability type is

based on our thorough evaluation on

various advisories and reports by [7],

[8], [10], and [11] whereas the

probability is based on our experiment.

Table 4. Summary of Taxonomy on C Code

Overflow Vulnerability Attack

Overflow

Type

MOE CA S O P

Unsafe

Function

Supplying

malicious

input long

enough to

overwrite

memory

location

No

validation

on input

before being

used in

unsafe

function or

restricting

unsafe

function

C H H

Array Out-of-

Bound

Supplying

input or

forcing

access on

array

beyond

defined

index either

No

validation

on index of

array before

being used.

C H H

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 652-664
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 661

Overflow

Type

MOE CA S O P

below

minimum or

above

minimum

index.

Integer

Range/Overfl

ow

Supplying

input used

in

arithmetic

operation

forcing the

result to

overwrite

memory

defined or

exploiting

miscalculati

on of

arithmetic

operation

Improper

estimation

on result of

arithmetic

calculation

C H H

Return-into-

libc

Overwriting

return

address

with

address of

library

function

Uncheck

argument

passing in a

function call

C L L

Memory

Function

Exploiting

misuse of

memory

function

(i.e. double

call to

free())

Never use

allocated

memory,

double free

of same

memory or

calling freed

memory.

C M M

Function

Pointer /

Pointer

Aliasing

Overwriting

the function

pointer to

point

address that

contains

malicious

code or

function

Use of

pointer

without

validating

the pointer

first

M M M

Variable

Type

Conversion

Exploiting

vulnerabiliti

es exist

during

conversion

of different

variable

type

Miscalculati

on of

variable size

involves in

conversion

M L M

Pointer

Scaling /

Pointer

Mixing

Exploiting

vulnerabiliti

es trigger

during

arithmetic

operation of

Miscalculati

on of

pointer size

in scaling or

mixing

process

M L M

Overflow

Type

MOE CA S O P

a pointer

Uninitialized

Variable

Exploiting

vulnerabiliti

es when

uninitialized

variable

being used

in the

program

A variable

being used

before

initialization

M L L

Null

Termination

Supplying

non-

terminated

input

No null

termination

validation

on input

M L M

* Notation

MOE – Mode of Exploit

CA – Code Appearance

S – Severity

O – Occurences

P – Probability of occurring

C – Critical

M – Medium

H – High

L - Low

6 CONCLUSIONS

We have discussed various

classifications of software overflow

vulnerabilities, and presented the

strengths and weaknesses of previous

taxonomies in general, and overflow and

C vulnerabilities in particular. We noted

at present there is no taxonomy

specifically addressing overflow

vulnerabilities from C source code

perspective. Therefore, we construct

taxonomy for C overflow vulnerabilities

attack. In producing this taxonomy, we

focus on how the overflow vulnerability

appears in C code and the criteria used

for a code to be considered as

vulnerable. We demonstrated the

application of our taxonomy in

identifying types of C overflow

vulnerabilities by providing a few

sample vulnerable code segments. The

taxonomy can be a valuable reference

for developers and security analysts to

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 652-664
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 662

identify potential security C loopholes so

as to reduce or prevent exploitations

altogether. We also evaluate our

taxonomy on its effectiveness,

comprehensiveness, and relevancies to

prove the important of having our

taxonomy as part of understanding and

eliminating C overflows vulnerabilities.

7 FUTURE WORKS

We look forward to extend our

validation and verification of our

taxonomy with standard vulnerability

databases to large set of developers and

implement it to evaluate the

effectiveness of the security

vulnerability program analysis tools.

8 REFERENCES

1. Aleph One: Smashing the Stack for Fun and

Profit. Phrack Magazine. Volume 7, Issue 49,

(1996)

2. Zitser, M.: Securing Software: An Evaluation of

Static Source Code Analyzers. M. Sc. Thesis.

Department of Electrical Engineering and

Computer Science, Massachusetts Institute of

Technology (2003)

3. Kratkiewicz, K.: Evaluating Static Analysis

Tools for Detecting Buffer Overflows in C Code.

M. Sc. Thesis. Harvard University (2005)

4. Zhivich, M. A.: Detecting Buffer Overflows

Using Testcase Synthesis and Code

Instrumentation. M. Sc. Thesis. Massachusetts

Institute of Technology (2005)

5. Akritidis, P., Cadar, C., Raiciu, C., Costa,

M., Castro, M.: Preventing Memory Error

Exploits with WIT. In: IEEE Symposium on

Security and Privacy, pp. 263 -- 277. IEEE

Computer Society Washington, DC, USA (2008)

6. Common Vulnerability and Exposures,

http://cve.mitre.org/

7. Microsoft Security Advisories,

http://www.microsoft.com/technet/security/advis

ory

8. IBM X-Force Threat Reports, https://www-

935.ibm.com/services/us/iss/xforce/trendreports/

9. 2010 CWE/SANS Top 25 Most Dangerous

Software Errors, http://cwe.mitre.org/top25/

10. Buffer Overflow on Common Vulnerability and

Exposures, http://cve.mitre.org/cgi-

bin/cvekey.cgi?keyword=Buffer+Overflow

11. Microsoft Security Advisories Archive,

http://www.microsoft.com/technet/security/advis

ory/archive.mspx

12. Chess, B., McGraw, G.: Static Analysis for

Security. J. IEEE Security and Privacy. Volume

2. Issue 6. 76 -- 79 (2004)

13. Foster, J. S., Hicks, M. W., Pugh, W.: Improving

software quality with static analysis. In: 7th ACM

SIGPLAN-SIGSOFT workshop on Program

Analysis for software tools and engineering, pp.

83 -- 84. ACM, New York (2007)

14. Emanuelsson, P., Nilsson, U.: A Comparative

Study of Industrial Static Analysis Tools. J.

Electronic Notes in Theoretical Computer

Science (ENTCS). Volume 217. 5--21 (2008)

15. Howard, M., LeBlanc, D., Viega, J.: 24 Deadly

Sins of Software Security: Programming Flaws

and How to Fix Them. McGraw Hill, United

States of America (2009)

16. Viega, J., McGraw, G.: Building Secure

Software: How to Avoid Security Problems the

Right Way. Addison-Wesley Professional, United

States of America (2001)

17. Seacord, R. C.: Secure Coding in C and C++.

Addison-Wesley Professional, United States of

America (2005)

18. Krsul, I. V.: Software Vulnerability Analysis.

Phd. Thesis. Purdue University (1998)

19. Lough, D. L.: A Taxonomy of Computer Attacks

with Applications to Wireless Networks. Phd.

Thesis. Virginia Polytechnic Institute and State

University (2001)

20. Aslam, T.: A Taxonomy of Security Faults in the

UNIX Operating System. M. Sc. Thesis.

Department of Computer Science, Purdue

University (1995)

21. Alhazmi, O. H., Woo, S. W, Malaiya, Y. K.:

Security Vulnerability Categories in Major

Software Systems. In: 3rd IASTED International

Conference on Communication, Network, and

Information Security (CNIS). ACTA Press,

Cambridge, USA (2006)

22. Pothamsetty, V., Akyol, B.: A Vulnerability

Taxonomy for Network Protocols: Corresponding

Engineering Best Practice Countermeasures. In:

IASTED International Conference on

Communications, Internet, and Information

Technology (CIIT). ACTA Press, US Virgin

Islands (2004)

23. Bazaz, A., Arthur, J. D.: Towards A Taxonomy

of Vulnerabilities. In: 40th International

Conference on System Sciences. Hawaii (2007)

24. Gegick, M., Williams, L.: Matching Attack

Patterns to Security Vulnerabilities in Software-

Intensive System Designs. In: Workshop on

Software Engineering for Secure Systems –

Building Trustworthy Applications. ACM New

York, USA (2005)

25. Howard, J. D., Longstaff, T. A.: A Common

Language for Computer Security Incidents. In:

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 652-664
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 663

Sandia Report (SAND98-8667). Sandia National

Laboratories, California (1998)

26. Tsipenyuk, K., Chess, B., McGraw, G.: Seven

Pernicious Kingdoms: A Taxonomy of Software

Security Errors. In: IEEE Security and Privacy.

Volume 3. No. 6. pp. 81--84. (2005)

27. Hansman, S., Hunt, R.: A taxonomy of network

and computer attacks. J. Computer and Security.

Volume 24, Issue 1, 31 -- 43, Elsevier Science

Ltd (2005)

28. Hansmann, S.: A Taxonomy of Network and

Computer Attacks Methodologies. In: Technical

Report. Department of Computer Science and

Software Engineering, University of Canterbury,

New Zealand (2003)

29. Killourhy, K. S., Maxion, R. A., Tan, K. M. C.: A

Defense-Centric Taxonomy Based on Attack

Manifestations. In: International Conference on

Dependable Systems and Networks. pp. 91 – 100.

IEEE Press, Los Alamitos, CA (2004)

30. Igure, V., Williams, R.: Taxonomies of Attacks

and Vulnerabilities in Computer Systems. J.

IEEE Communications Surveys and Tutorials.

Volume 10, Issue 1. 6 – 19 (2008)

31. Shahriar, H., Zulkernine, M.: Taxonomy and

Classification of Automatic Monitoring of

Program Security Vulnerability Exploitations. J.

Systems and Software 84, 250--269 (2011)

32. Sotirov, A. I.: Automatic Vulnerability Detection

Using Static Source Code Analysis. M. Sc.

Thesis. University of Alabama (2005)

33. Moore, H. D.: Exploiting Vulnerabilities. In:

Secure Application Development

(SECAPPDEV). Secappdev.org (2007)

34. Metasploit Penetration Testing Framework,

http://www.metasploit.com/framework/modules/

35. Symantec Threat Explorer.

http://www.symantec.com/business/security_resp

onse/threatexplorer/vulnerabilities.jsp

36. Wagner, D.: Static Analysis and Computer

Security: New Techniques for Software

Assurance. Phd. Thesis. University of California,

Berkeley (2000)

37. Security Development Lifecycle (SDL) Banned

Function Calls. http://msdn.microsoft.com/en-

us/library/bb288454.aspx

38. Stanford University: Pintos Project.

http://www.stanford.edu/class/cs140/projects/pint

os/pintos.html#SEC_Top

39. Secunia Advisories.

http://secunia.com/advisories/

40. Engler, D.: How to find lots of bugs in real code

with system-specific static analysis.

http://www.stanford.edu/class/cs343/mc-

cs343.pdf

41. Ashcraft, K., Engler, D.: Using Programmer-

written Compiler Extensions to Catch Security

Holes.IEEE Symposium on Security And

Privacy, pp. 143--159 (2002)

42. Red Hat Bugzilla: Bug 546621.

https://bugzilla.redhat.com/show_bug.cgi?id=546

621

43. National Vulnerability Database: Vulnerability

Summary for CVE-2010-4409.

http://web.nvd.nist.gov/view/vuln/detail?vulnId=

CVE-2010-4409

44. Integer Overflow. http://cve.mitre.org/cgi-

bin/cvekey.cgi?keyword=Integer+Overflow

45. CWE-190: Integer Overflow or Wraparound.

http://cwe.mitre.org/data/definitions/190.html

46. Richarte, G.: Multiple Vulnerabilities in Stack

Smashing Protection Technologies. Security

Advisory, Core Labs (2002)

47. Stack Overflow.

http://www.owasp.org/index.php/Stack_overflow

48. Lhee, K., Chapin, S. J.: Type-Assisted Dynamic

Buffer Overflow Detection. In: 11th USENIX

Security Symposium. USENIX Association, CA,

USA (2002)

49. Nelißen, J.: Buffer Overflows for Dummies.

SANS InfoSec Reading Room -

Threats/Vulnerabilities. SANS Institute (2003)

50. Nergal: The Advanced Return-into-lib(c)

Exploits. Phrack Magazine. Volume 11, Issue 58,

(2001)

51. Using Environment for Returning Into Lib C.

http://www.securiteam.com/securityreviews/5HP

020A6MG.html

52. Grenier, L. A.: Practical Code Auditing.

Metasploit Framework (2002)

53. Akritidis, P., Cadar, C., Raiciu, C., Costa, M.,

Castro, M.: Preventing Memory Error Exploits

with WIT. In: IEEE Symposium on Security and

Privacy. pp. 263--277. (2008)

54. Tevis, J. J., Hamilton, J. A.: Methods for the

Prevention, Detection and Removal of Software

Security Vulnerabilities. In: 42nd annual

Southeast Regional Conference. pp. 197--202.

(2004)

55. SecurityFocus.

http://www.securityfocus.com/archive/1/515362

56. Microsoft Security Bulletin MS03-029.

http://www.microsoft.com/technet/security/bullet

in/ms03-029.mspx

57. iDefense Labs Public Advisory: 06.12.07.

http://labs.idefense.com/intelligence/vulnerabiliti

es/display.php?id=542

58. CVE-2005-3828.

http://www.cvedetails.com/cve/CVE-2005-3848/

59. Testing for Heap Overflow.

http://www.owasp.org/index.php/Testing_for_He

ap_Overflow

60. Double Free.

http://www.owasp.org/index.php/Double_Free

61. CWE-415: Double Free.

http://cwe.mitre.org/data/definitions/415.html

62. Kolmonen, L.: Securing Network Software using

Static Analysis. In: Seminar on Network

Security. Helsinki University of Technology

(2007)

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 652-664
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 664

63. Nagy, C., Mancoridis, S.: Static Security

Analysis Based on Input-related Software Faults.

In: European Conference on Software

Maintenance and Reengineering. pp. 37--46.

IEEE Computer Society (2009)

64. Durden, T.: Automated Vulnerability Auditing in

Machine Code. Phrack Magazine. Issue 64

(2007)

65. Michael, C., Lavenhar, S. R.: Source Code

Analysis Tools – Overview. Homeland Security

(2006)

66. Wagner, D., Foster, J. S., Brewer, E. A., Aiken,

A.: A First Step Towards Automated Detection of

Buffer Overrun Vulnerabilities. In: Network and

Distributed System Security (2000)

67. C Language Issues for Application Security.

http://www.informit.com/articles/article.aspx?p=

686170&seqNum=6

68. Pozza, D., Sisto, R. : A Lightweight Security

Analyzer inside GCC. In: 3rd International

Conference on Availability, Reliability and

Security. pp. 851--858. Barcelona (2008)

69. Morin, J.: Type Conversion Errors. In: Black Hat.

USA (2007)

70. FFmpeg Type Conversion Vulnerability.

http://securityreason.com/securityalert/5033

71. CWE-704: Incorrect Type Conversion or Cast.

http://cwe.mitre.org/data/definitions/704.html

72. CWE-195: Signed to Unsigned Conversion Error.

http://cwe.mitre.org/data/definitions/195.html

73. STR34-C. Cast characters to unsigned char

before converting to larger integer sizes.

https://www.securecoding.cert.org/confluence/dis

play/seccode/STR34-

C.+Cast+characters+to+unsigned+char+before+c

onverting+to+larger+integer+sizes

74. Black, P. E., Kass, M., Kog, M.: Source Code

Security Analysis Tool Functional Specification

Version 1.0. In: NIST Special Publication 500-

268. (2007)

75. Seacord, R. C.: The CERT C Secure Coding

Standard. Addison-Wesley Professional (2008)

76. Unintentional Pointer Scaling.

http://www.owasp.org/index.php/Unintentional_p

ointer_scaling

77. Uninitialized variable.

http://en.wikipedia.org/wiki/Uninitialized_variabl

e

78. Eight C++ programming mistakes the compiler

won’t catch. http://www.learncpp.com/cpp-

programming/eight-c-programming-mistakes-the-

compiler-wont-catch/

79. Uninitialized Variable.

http://www.owasp.org/index.php/Uninitialized_V

ariable

80. Flake, H.: Attacks on Uninitialized Local

Variables. Black Hat Federal (2006)

81. CWE-170: Improper Null Termination.

http://cwe.mitre.org/data/definitions/170.html

82. Microsoft Security Bulletin MS09-056.

http://www.microsoft.com/technet/security/bullet

in/ms09-056.mspx

83. CVE-2007-0042. http://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2007-0042

84. SolarDesigner: Getting around non-executable

stack (and fix). Bugtraq Mailing List.

http://www.securityfocus.com/archive/1/7480

