International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 652-664
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

Classification and Measurement on C Overflow Vulnerabilities Attack

Nurul Haszeli Ahmad*2, Syed Ahmad Aljunid?, Jamalul-lail Ab Manan'
I MIMOS Berhad, TPM Bukit Jalil, 57000 Kuala Lumpur, Malaysia

2 Faculty of Computer Sciences and Mathematics, UiTM, Shah Alam 40000, Selangor, Malaysia
{haszeli.ahmad, jamalul.lail}@mimos.my, aljunid@tmsk.uitm.edu.my

ABSTRACT

Since early 70s, softwarrrre vulnerabilities
have been classified and measured for
various purposes including software
assurance. Out of many software
vulnerabilities, C vulnerabilities are the most
common subject discussed, classified and
measured. However, there are still gaps in
those early works as C vulnerabilities still
exist and reported by various security
advisors. The most common and highly
ranked is C overflow wvulnerabilities.
Therefore, we propose this taxonomy, which
classified all existing overflow
vulnerabilities including four vulnerabilities
that have never been classified before. We
also provide a guideline to identified and
avoid these vulnerabilities from source code
perspective. We ensure our taxonomy is
constructed to meet the characteristics of
well-defined taxonomy. We also evaluate
our taxonomy by classifying various
software security advisories and reports
using our taxonomy. As a result, our
taxonomy is complete and comprehensive,
and hence, is a valuable reference to be used
as part of software assurance processes.

KEYWORDS
Taxonomy, Classification, Buffer Overflow,

Source Code Vulnerabilities, Software
Security, Exploitable Vulnerability.

1 INTRODUCTION

Since the first recorded vulnerabilities
exploitation [1], with various protection

and preventive mechanism developed
and enhanced, C vulnerabilities
exploitation is still a huge issues in
software security community [6], [7],
and [8]. From numerous C
vulnerabilities, overflow vulnerabilities
was identified as the most crucial as it is
still the most dominant and ranked with
high severity [9], [10], [11], [15], [16],
[17] and [19]. No doubt that previous
work has significant impact in reducing
C wvulnerabilities. However, there are
still improvements needed to eliminate
the issue or at least minimize the
possibility of C wvulnerabilities from
occurring.

Through our analysis on works by [2],
[3]1, [4], [5], [12], [13], and [14], we
conclude that there are three major
categories of improvement; vulnerability
understanding, analysis tool, and
security implementation. For this
purpose, we limit our discussion to
vulnerability understanding since
accurate comprehension on the matter is
crucial to improve analysis tool and
security implementation, as shared by
[18]. In this paper, we synthesize and
construct a taxonomy focusing on C
overflow vulnerabilities since there is no
taxonomies addressing C overflow
vulnerabilities from source code
perspective. We also describe each
behavior, structure, and rules to find and
avoid these vulnerabilities. In addition,
we also construct experiments to verify
the possibility of these vulnerabilities to

652

mailto:jamalul.lail%7d@mimos.my
mailto:aljunid@tmsk.uitm.edu.my

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 652-664
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

occur in current operating system i.e.
Windows XP and Windows Seven.

2 PREVIOUS WORKS

Various taxonomies have been
constructed and presented ranging from
numerous perspectives, scopes and
purposes. Despite differences, those
taxonomies share the same objective; to
minimize exploitable software
vulnerabilities. [18], [19], [20], [21],
[22], [23], [24], [25], [26], [28], and [29]
presented general vulnerability
taxonomies whereas [2], [3], [4], [32],
and [33] focused on C overflow
vulnerabilities.

While those past works on taxonomies
have significant impact in reducing
vulnerabilities and exploitation, renown
security institutes and corporations [8],
[10], and [11] continue issuing reports
and advisories on C overflow
vulnerabilities, signifying breaches for
exploratory discovery to aim for superior
community comprehension of C
overflows vulnerabilities. Most of these
taxonomies were subsequently reviewed
and analyzed, as done by [30]. Our work
however focuses on C overflows
vulnerabilities. As such, taxonomies that
do not enclose or discuss C overflow
vulnerabilities are ignored. Table 1
summarized our study on previous
taxonomies focusing on types of C
overflow vulnerabilities.

Table 1. Summary of Previous Vulnerabilities
Taxonomies

Auth | Type of C Overflows Vulnerabilities

Auth | Type of C Overflows Vulnerabilities

or U(A]|l |RE|M|F [VT|P (U |N

F O |O|L |F [P |C SV |T
[31] @ Nox o x ox x X X X X
[21] x Nox o x ox x X X X X
6] @ v N x @ N x x A «
[27] ~ ¥ X2 o~ o= ~ o~ =

or UJ|A |l [RI|M|F |VT|P |U |N
F 1O |OfL |F |P|C S|V T
[33] @ NN o x x oxx X X X
[32] @ NooAd o x x ox x X X X
[4] g vV x x x x x X X X
[3] () Nox o ox X X X X X X
[2] () Nox o ox X X X X X X
* Notation
UF — Unsafe Function 10/] - Partially
AO - Array Out-of- Classified
bound \ - Classified

10 — Integer Overflow x - Not Classified
RIL — Return-Into-LibC = - Generally mention
MF — Memory Function

FP — Function Pointer /

Pointer Aliasing

VTC — Variable Type

Conversion

PS — Pointer Scaling /

Mixing

UV - Uninitialized

Variable

NT — Null Termination

As shown in Table 1, we discover four
new types of overflow vulnerabilities
necessitate classification i.e. Unsafe
Function, Return-Into-LibC, Memory
Function and Variable Type Conversion.
We do not consider Pointer
Scaling/Mixing as new overflow
vulnerabilities type as it was classified in
Function Pointer/Pointer Aliasing group
by [26]. However, in our taxonomy, we
separate those two due to different
behavior and method used to identify the
types and it is further explained in
section 3.8.

3 TAXONOMY OF C OVERFLOW
VULNERABILITIES ATTACK

We evaluate sets of vulnerabilities
advisories and exploitations reports since
1988 until 2011. There are more than
50000 reported cases of C overflow
vulnerabilities originating from five

653

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 652-664
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

vulnerabilities databases and malware
collection sites [9], [34], [6], [7], and
[35].

From these reports, we classify types of
C overflow vulnerabilities into ten
categories. Four of them are new and
still unclassified. These are unsafe
functions, return-into-libc, memory
functions and variable type conversion.
They have at least a medium level of
severity, possibility to appear and
exploited [6], [7], and [9]. The impact of
exploitation with unsafe function is
recognized as the most dangerous and
outstanding [9], [34], [6], [7], and [35].
Figure 1 visualizes the new taxonomy of
overflow vulnerability attack, organized

| Taxonomy of C Qverflow Vulnerabilities Attack |
_| Unsafe Functions
,_I Amay Out-of-Bound

|
|
—| Integer Range/Overflow |
|
|

—| Retumn-into-libc
—| MemoryFunction

—| Function Pointer/ Pointer Aliasing I

—| Variable Type Conversion |
—| PointerScaling/ Pointer Mixing I

—| Uninitialized Variable |

—| Null Termination]

in accordance to its severity, dominance,
potential occurrence and impact. This
taxonomy simplifies the understanding
on implications of each types, their
behavior and preventive mechanisms.

Figure 1. Proposed Taxonomy for Overflow
Vulnerabilities Attack in C

3.1 Unsafe Functions

Although unsafe functions have been
exploited since 1988 [1], [15], 17], it is
still relevant. More importantly, this
well-known and well-documented
inherent C security vulnerability is
categorized as the most critical software
vulnerabilities to continue to dominate C

vulnerabilities report [6], [7], [35] and
[39]. This implies that there are software
developers who are either ignorant,
unaware, or simply bypass software
security policies for prompt development
[15], [16]. Below is a sample of unsafe
functions vulnerability.

Part of a program showing scanf() vulnerability.

char str[20];
char str2[10];

scanf ("%s", &str) ;
scanf ("%s", &str2);

By supplying an input greater than the
allocated size at the first scanf(), it
automatically overflows the seconds
variable and force the program to skip
the second scanf(). This is one of many
unsafe functions in C [12], [15], [16],
[17], [36], [37] and [38]. Previous
taxonomies classified few unsafe
functions as Format String Attack, Read-
Write, or Buffer-Overrun [2], [3], [15].
This is arguable since there are unsafe
functions that do not implement
formatting or require specifying index
for reading or writing.

To prevent overflows via unsafe
functions, one needs to check input
variable before passing into any unsafe
functions. Alternatively, there is C
library safe functions that developers can
use to avoid this type of overflow [17],
[37].

3.2 Array Out-of-bound
Array Out-of-bound overflow can be

triggered by misuse or improper
handling of an array in a read or write

654

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 652-664
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

operation, irrespective of it being above
upper or below lower bound. A true
sample is shown below.

A section from linux driver code in i810_dma.c
contains the vulnerability [40], [41].

if (copy from user(&d, arg,
sizeof (arg)))

return —-EFAULT;
if (d.idx > dma->buf count)

return —-EINVAL;
buf = dma->buflist[d.idx];
//overflow if d.idx == -1
copy from user (buf priv-
>virtual, d.address, d.used);

As shown in the above sample, when
d.idx contains the value of -1, it will
bypass the conditional statement which
triggers overflow on the following
statement. Array Out-of-bound
overflows is easy to detect and prevent
by monitoring all array processes and
verifying whether the index is within the
range specified; between zeros to less
than one from total array size.

3.3 Integer Range / Overflow

This type of overflow may occur due to
miscalculation or wrong assumption in
an arithmetic operation and is gaining its
popularity in vulnerabilities databases
[42], [43], [44]. The possibility of
exploit is small, but the result of
exploiting it is significantly dangerous
[45].

This classification is attributed from
[26], [32], and [33]. The key difference
is the removal of numerical conversion
as one of the integer overflow type, and
classifies it in a different category. This
is due to its differences in behavior and
code structure. Furthermore, the
conversion errors are dependent on

platform used to execute it. A true
sample from [45] is shown below.

A fraction of C code contains Integer
Range/Overflow vulnerability [45].

nresp = packet get int();
if (nresp > 0) {

response =
xmalloc (nresp*sizeof (char*));
for (i = 0; 1 > nresp; it++)

response[i] =
packet get string(NULL);
}

As shown in the above code, if one able
to inject input causing variable nresp to
contain large integer, the operation
xmalloc(nresp*sizeof(char*)) will
possibly trigger overflow, and later can
be exploited [45]. It is difficult to detect
as one needs to understand the logics
and predict possible outcome from the
arithmetic operation. As a result, this
vulnerability tends to be left out
undetected either by analysis tool or
manual code review. This vulnerability
can be avoided by simply restricting the
possible input value before arithmetic
operation took place.

3.4 Return-into-libC

Although it has been recognized as
earlier as unsafe functions [84], it is yet
to be appropriately classified. Many
vulnerabilities databases rank its severity
as high although the number of
occurrence is low. It is difficult to detect
since it can only appear during runtime
and the code itself does not have specific
characteristic to indicate it as vulnerable.
Earlier protection tools such as
ProPolice and StackShield have failed to
detect [46]. It is also difficult to exploit
since ones need to know the exact length

655

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 652-664
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

of character, address of function call,
and address of environment variable.

A sample vulnerable code contains return-into-
libc vulnerability.

int main (char **av)
{

char a[20];

if (strlen(av([1l]) < 20)
//verified the length

strcpy(a, av([1l]);

//nothing happen

printf ("%s", a);
//possible have wvulnerability

return 0;

}

Based on the code above, it is possible
to supply a string long enough to fill up
the allocated memory space together
with function call to replace the defined
return address. The result of exploiting it
is extremely dangerous [47]. To
recognize the wvulnerability, security
analysts need to understand possible
input values and estimate memory
location. It is similar to Unsafe Function
and Array Out-of-bound class but differ
in terms of behavior and memory
process. Memory in the former two
classes will overflow and overwrite the
return address, resulting in unintended
behavior. In contrast, Return-into-lib
will replace return address with a
function call to another program e.g.
system() and WinExec() [48], [49], [50].
To prevent it from appearing or being
exploited, the contents of the input must
be validated apart from the length.

3.5 Memory Function

Even though it has been in the security
radar as early as 2002 [52], [53], [54],
[55], [56], [57], [58], [59], it is not been
properly classified. This type of
vulnerability has gain notoriety as one of
the preferred wvulnerability for

exploitation due to current programming
trend which utilizes dynamic memory
for better performance and scalability.
Double call on free() function, improper
use of malloc(), calloc(), and realloc()
functions, uninitialized memory, and
unused allocated memory are few
examples of memory functions
vulnerabilities. Simple memory function
vulnerability is shown below.

A fragment of C code with free() function
vulnerability.

char* ptr = (char¥) malloc
(DEFINED SIZE);

free (ptr) ; //first call to

free ptr
free (ptr); //vulnerable due
to free the freed ptr

As shown above, the second call to free
the same variable will cause unknown
behavior. This can be used for
exploitation and its severity is equivalent
to the first three types [61], [60].

Due to its safe nature and programming
complexity, it is difficult to assess its
vulnerability potential unless an in-depth
semantics view of program is used.
From coding perspective, this type of
vulnerability can be prevented by
validating the memory before usage,
initializing memory with default value
depending on variable type, and
removing unused memory.

3.6 Function Pointer / Pointer Aliasing
Function pointer or pointer aliasing is a

variable storing address of a function or
as reference to another variable. It can

656

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 652-664
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

later be called by the given pointer name
which assists developer’s flexibility and
ease of programming. It becomes
vulnerable when the reference has been
nullified or overwritten to point to a
different location or function [52], [62],
[63], [64].

It is difficult to detect by manual code
review unless it is done by highly
experience security analysts. However,
using automatic tool requires the tool to
comprehend semantically the code [65].
Below is an example.

An example of pointer aliasing vulnerability.

char s[20], *ptr, s2[20];
ptr = s;

//vulnerable line of code
strncpy(s2, ptr, 20); //

vulnerability realized

As shown above, the pointer ptr is
referring to a null value since the
variable s is yet to be initialized. The
subsequent line of code realizes the
vulnerability, although the function used
is a safe function. The only way to stop
this type of wvulnerability from
continuing to occur is by enforcing
validation on pointer variable before
being used throughout the program.

3.7 Variable Type Conversion

Improper conversion of a variable can
create vulnerability and exploitation
[67], [68], [69]. Although there are
considerable numbers of advisories
reporting this vulnerability [67], [70], it
was never mentioned in any earlier
taxonomy. It may be due to infrequent
occurrence and minimal severity. It was
also considered as a member of integer

overflow vulnerability which is arguable
since conversion errors do happen on
other data format. A true example of this
vulnerability is shown below.

Fraction of Bash version 1.14.6 contains
Variable Type Conversion vulnerability [73].

static int yy string get() {
register char *string;
register int c;

string =
bash input.location.string;
c = EOF;

if (string && *string) {
c = *string++;
//vulnerable line
bash input.location.string
= string;
}

return (c);

}

This wvulnerability is proven to be
exploitable [67], [68], [69], [71], and
[72]. Ignoring it is reasonably risky. To
avoid conversion error vulnerability, it is
strongly suggested to validate all
variable involves in conversion, as well
as avoid unnecessary conversion, or use
the same data type.

3.8 Pointer Scaling / Mixing

This vulnerability may arise during an
arithmetic operation of a pointer [74],
[75]. Semantically, it is different to
pointer aliasing in terms of coding. It
seldom happens but the impact of
exploiting it is comparable to other type
of overflow vulnerability.

In a pointer scaling or mixing process,
the size of object pointed will determine
the size of the value to be added [75]. If
one failed to understand this, he or she
may wrongly calculate and assign the

657

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 652-664
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

wrong size of object to accept the result,
and therefore runs the risk of having
overflow vulnerability.

Sample of code contains Pointer Scaling /
Mixing vulnerability [76].

int *p = x;
char * second char = (char
*)(p + 1);

As shown in the above code, subsequent
read or write to pointer second_char will
cause overflow or unknown behavior
due to addition of value 1 to current
address location of variable x.

To avoid this vulnerability from
occurring, ones must recognize and be
able to correctly determine the accurate
size of recipient variable and actual
location in memory.

3.9 Uninitialized Variable

Uninitialized variable is a variable
declared without value assigned to it.
Nonetheless, computer will allocate
memory and assign unknown values,
which later if being used will cause
computer system to perform undesired
behavior [77], [78], [79]. It can also be
exploited by attackers thus allowing the
system to be compromised [80].

A fraction of C code contains Uninitialized
Variable vulnerability [80].

void take ptr(int * bptr) {
print (“%1x”, *bptr)

’

}

int main (int argc, char **argv) {
int b;
take ptr(&b);
print (“%1x”, Db);

Variable b in the sample above was not
initialized and then being used twice
without value assigned to it. By default,
a location has been set in memory and
the next line after declaration will force
either computer system to behave
abnormal or be wvulnerable for
exploitation. Normal compiler, code
review, or even most static analysis will
not mark this as vulnerable. There is also
possibility of triggering false alarm if
there is value assign to it before use.

The easiest method to overcome this
vulnerability is to initialize all variable
with acceptable default value such as
zero for numerical type of variable and
empty string or blank space for character
or string. It must not be left uninitialized
or contain null value before used.
Another approach to avoid this
vulnerability ~which might impact
performance is to validate variable
before usage.

3.10 Null Termination

Although it seem likely to ensue and can
easily be avoided, it still appear in few
vulnerability databases [82] and [83].
The consequence of having this
vulnerability is equally hazardous as
other type of vulnerabilities [81].

Null termination vulnerability is defined
as improper string termination, array that
does not contain null character or
equivalent terminator, or no null byte
termination with possible impact of
causing overflows [52], [54], [81]. A
sample of this vulnerability is shown in
code below.

Fraction of C code contains Null Termination
vulnerability [81].

#define MAXLEN 1024

658

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 652-664
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

char *pathbuf [MAXLEN] ;

read(cfgfile, inputbuf, MAXLEN) ;
strcpy (pathbuf, inputbuf);

The above code which seems safe as the
read() function has limited the size of
input to the same size of destination
buffer on the last line. However, if the
input did not have null termination, due
to behavior of strcpy(), it will continue
to read it until it find a null character.
This makes it possible to trigger an
overflow on the next reading of memory.
Even if it was replaced with strncpy(),
which is considered as safe, the behavior
is still unpredictable, thus making it a
unique vulnerability on its own.

To overcome the vulnerability, one
should validate the input before use, or
restrict the length of input to have less
than one from the actual defined size.

4 TAXONOMY EVALUATIONS

We conduct two experiments to evaluate
our taxonomy effectiveness and
comprehensiveness. For the first
experiment, we select five developers
whom are familiar with C Language and
present our taxonomy to them. Those
five developers were requested to map
security advisories related to C overflow
vulnerabilities with the given taxonomy.
We run the evaluation in three phases. In
the first phase, each developer is given
set of reports and taxonomy and no
explanation given in using the
taxonomy. On phase two, we provide
explanation and guide them using the
same set of reports. On phase three, they
are given a new set of reports. The result
shown in the table below is based on the
last phases of the evaluation.

Table 2. Evaluating Taxonomy for
Effectiveness and Comprehensiveness

Tester | Result

No. S M F SR
Report
1 100 90 4 6 0.9
2 100 78 7 15 0.78
3 100 96 0 4 0.96
4 100 85 8 7 0.85
5 100 92 1 7 0.92
* Notation
S — Successful Mapping
M — Mismatch

F — Failed to match
SR — Successful rate (%)

Based on the result on table 4, it is
concluded that our taxonomy has an
average of 0.882 successful rates in
identifying C overflow vulnerabilities.
The rates can be improved by providing
few samples and detail explanation of
each type of overflow vulnerabilities.
The second experiment was to evaluate
comprehensiveness of our taxonomy and
relevancies as of today environment. Our
scope is limited to 32-bit operating
systems since it is widely used by
computer user compare to 64-Bit which
is mostly used in server environment.
We created few programs for each type
of overflow vulnerabilities and executed
those programs in three types of
operating system. The experiment was
conducted for three times daily for one
week. For this purpose, we used a
personal computer (PC) with 4GB RAM
and processor Intel Pentium Core 2 Duo.
The PC was installed with three
operating system; Windows XP
Professional (Service Pack 3) 32Bit,
Windows 7 Professional 32Bit, and
Linux Centos 5.5 32Bit. Each program
was compiled using compiler MinGW
GCC 32bit. Result of our experiment is
tabularized below.

659

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 652-664
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

Table 3. Evaluating Taxonomy for
Comprehensiveness and Relevancies

Overflows Types | Result

Windows | Windows | Linux
XPSP3 |7 Centos

ol
(S

Unsafe Functions
Array Out-of-
bound

Integer V
Range/Overflow
Return-Into-LibC @
Memory Function &
Function Pointer / @&
Pointer Aliasing
Variable Type @
Conversion

Pointer Scaling / @
Mixing
Uninitialized (0]
Variable

Null Termination @

Q 8 8 8 Q<8 < <<
Q 8 8 8 ‘vl <+ <<

* Notation
@ — Partially Overflow x - No possibility of
\ - Overflow overflow

As shown in Table 5, the first three
dominant and severe types of overflow
vulnerabilities are still relevant and have
the possibility of occurring again if there
IS no essential action taken to eliminate
those vulnerabilities. This also implies
that although Unsafe Functions, Array
Out-of-bound and Integer Overflow are
common, well-defined vulnerabilities do
exist in various security reports [6], [7],
[35] and [39]. There is still deficient of
security concern among developers.
Added to those, three is Uninitialized
Variable which can be easily avoided if
software developers regard the
importance of initializing variable.

For other types of overflow
vulnerabilities, we consider them as
partial overflow as they are depending
on few conditions such as code

complexity, functions being used and
type of variable used. However, we
cannot ignore the possibility of those
vulnerabilities to appear and thus it is
still relevant until today.

5 SUMMARY OF TAXONOMY ON
C CODE OVERFLOW
VULNERABILITIES ATTACK

We have presented our taxonomy and
briefly explain on each of the categories
in our taxonomy, method to identify and
avoid those vulnerabilities and evaluate
our taxonomy via two experiments. As
summary of our taxonomy, we tabulate
below the types or categories or
overflow vulnerability attacks, technique
it being manipulated or exploited,
method to identify, the severity,
occurrences, and probability of
reappearing. The occurrence and
severity of listed vulnerability type is
based on our thorough evaluation on
various advisories and reports by [7],
[8], [10], and [11] whereas the
probability is based on our experiment.

Table 4. Summary of Taxonomy on C Code
Overflow Vulnerability Attack

Overflow MOE CA S OFP
Type

Unsafe Supplying No C HH
Function malicious validation

input long on input
enough to before being
overwrite used in

memory unsafe
location function or
restricting
unsafe
function
Array Out-of- Supplying No C HH
Bound input or validation
forcing on index of
access on array before
array being used.
beyond
defined
index either

660

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 652-664
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

Overflow MOE CA
Type
below
minimum or
above
minimum
index.
Integer Supplying Improper
Range/Overfl inputused estimation
ow in on result of
arithmetic arithmetic
operation calculation
forcing the
result to
overwrite
memory
defined or
exploiting
miscalculati
on of
arithmetic
operation
Return-into- Overwriting Uncheck
libc return argument
address passing in a
with function call
address of
library
function
Memory Exploiting Never use
Function misuse of allocated
memory memory,
function double free
(i.e. double of same
call to memory or
free()) calling freed
memory.
Function Overwriting Use of
Pointer / the function pointer
Pointer pointer to without
Aliasing point validating
address that the pointer
contains first
malicious
code or
function
Variable Exploiting Miscalculati
Type vulnerabiliti on of
Conversion es exist variable size
during involves in
conversion conversion
of different
variable
type
Pointer Exploiting Miscalculati
Scaling / vulnerabiliti on of
Pointer es trigger pointer size
Mixing during in scaling or
arithmetic ~ mixing
operation of process

Overflow MOE CA S OFP
Type

a pointer
Uninitialized Exploiting Avariable ™M L L
Variable vulnerabiliti being used

es when before

uninitialized initialization

variable

being used

in the

program
Null Supplying No null ML M
Termination non- termination

terminated validation

input on input
* Notation

MOE — Mode of Exploit
CA — Code Appearance

S — Severity

O — Occurences

P — Probability of occurring
C — Critical

M — Medium

H — High

L - Low

6 CONCLUSIONS

We have discussed various
classifications of software overflow
vulnerabilities, and presented the
strengths and weaknesses of previous
taxonomies in general, and overflow and
C vulnerabilities in particular. We noted
at present there is no taxonomy
specifically addressing overflow
vulnerabilities from C source code
perspective. Therefore, we construct
taxonomy for C overflow vulnerabilities
attack. In producing this taxonomy, we
focus on how the overflow vulnerability
appears in C code and the criteria used
for a code to be considered as
vulnerable. We demonstrated the
application of our taxonomy in
identifying types of C overflow
vulnerabilities by providing a few
sample vulnerable code segments. The
taxonomy can be a valuable reference
for developers and security analysts to

661

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 652-664
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

identify potential security C loopholes so
as to reduce or prevent exploitations
altogether. We also evaluate our
taxonomy on its effectiveness,
comprehensiveness, and relevancies to
prove the important of having our
taxonomy as part of understanding and
eliminating C overflows vulnerabilities.

7 FUTURE WORKS

We look forward to extend our
validation and verification of our
taxonomy with standard vulnerability
databases to large set of developers and
implement it to evaluate the
effectiveness of the security
vulnerability program analysis tools.

8 REFERENCES

1. Aleph One: Smashing the Stack for Fun and
Profit. Phrack Magazine. Volume 7, Issue 49,
(1996)

2. Zitser, M.: Securing Software: An Evaluation of
Static Source Code Analyzers. M. Sc. Thesis.
Department of Electrical Engineering and
Computer Science, Massachusetts Institute of
Technology (2003)

3. Kratkiewicz, K.: Evaluating Static Analysis
Tools for Detecting Buffer Overflows in C Code.
M. Sc. Thesis. Harvard University (2005)

4. Zhivich, M. A.: Detecting Buffer Overflows
Using Testcase Synthesis and Code
Instrumentation. M. Sc. Thesis. Massachusetts
Institute of Technology (2005)

5. Akritidis, P.,, Cadar, C., Raiciu, C., Costa,
M., Castro, M.: Preventing Memory Error
Exploits with WIT. In: IEEE Symposium on
Security and Privacy, pp. 263 -- 277. IEEE
Computer Society Washington, DC, USA (2008)

6. Common Vulnerability = and Exposures,
http://cve.mitre.org/

7. Microsoft Security Advisories,
http://www.microsoft.com/technet/security/advis
ory

8. IBM X-Force Threat Reports, https://www-
935.ibm.com/services/us/iss/xforce/trendreports/

9. 2010 CWE/SANS Top 25 Most Dangerous
Software Errors, http://cwe.mitre.org/top25/

10. Buffer Overflow on Common Vulnerability and
Exposures, http://cve.mitre.org/cgi-
bin/cvekey.cgi?keyword=Buffer+Overflow

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Microsoft ~ Security = Advisories Archive,
http://www.microsoft.com/technet/security/advis
ory/archive.mspx

Chess, B., McGraw, G.: Static Analysis for
Security. J. IEEE Security and Privacy. Volume
2. Issue 6. 76 -- 79 (2004)

Foster, J. S., Hicks, M. W., Pugh, W.: Improving
software quality with static analysis. In: 7" ACM
SIGPLAN-SIGSOFT workshop on Program
Analysis for software tools and engineering, pp.
83 -- 84. ACM, New York (2007)

Emanuelsson, P., Nilsson, U.: A Comparative
Study of Industrial Static Analysis Tools. J.
Electronic Notes in Theoretical Computer
Science (ENTCS). Volume 217. 5--21 (2008)
Howard, M., LeBlanc, D., Viega, J.: 24 Deadly
Sins of Software Security: Programming Flaws
and How to Fix Them. McGraw Hill, United
States of America (2009)

Viega, J., McGraw, G.: Building Secure
Software: How to Avoid Security Problems the
Right Way. Addison-Wesley Professional, United
States of America (2001)

Seacord, R. C.: Secure Coding in C and C++.
Addison-Wesley Professional, United States of
America (2005)

Krsul, 1. V.: Software Vulnerability Analysis.
Phd. Thesis. Purdue University (1998)

Lough, D. L.: A Taxonomy of Computer Attacks
with Applications to Wireless Networks. Phd.
Thesis. Virginia Polytechnic Institute and State
University (2001)

Aslam, T.: A Taxonomy of Security Faults in the
UNIX Operating System. M. Sc. Thesis.
Department of Computer Science, Purdue
University (1995)

Alhazmi, O. H., Woo, S. W, Malaiya, Y. K.:
Security Vulnerability Categories in Major
Software Systems. In: 3rd IASTED International
Conference on Communication, Network, and
Information Security (CNIS). ACTA Press,
Cambridge, USA (2006)

Pothamsetty, V., Akyol, B.: A Vulnerability
Taxonomy for Network Protocols: Corresponding
Engineering Best Practice Countermeasures. In:
IASTED International Conference on
Communications, Internet, and Information
Technology (CIIT). ACTA Press, US Virgin
Islands (2004)

Bazaz, A., Arthur, J. D.: Towards A Taxonomy
of Vulnerabilities. In: 40th International
Conference on System Sciences. Hawaii (2007)
Gegick, M., Williams, L.: Matching Attack
Patterns to Security Vulnerabilities in Software-
Intensive System Designs. In: Workshop on
Software Engineering for Secure Systems -
Building Trustworthy Applications. ACM New
York, USA (2005)

Howard, J. D., Longstaff, T. A.: A Common
Language for Computer Security Incidents. In:

662

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 652-664
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Sandia Report (SAND98-8667). Sandia National
Laboratories, California (1998)

Tsipenyuk, K., Chess, B., McGraw, G.: Seven
Pernicious Kingdoms: A Taxonomy of Software
Security Errors. In: IEEE Security and Privacy.
Volume 3. No. 6. pp. 81--84. (2005)

Hansman, S., Hunt, R.: A taxonomy of network
and computer attacks. J. Computer and Security.
Volume 24, Issue 1, 31 -- 43, Elsevier Science
Ltd (2005)

Hansmann, S.: A Taxonomy of Network and
Computer Attacks Methodologies. In: Technical
Report. Department of Computer Science and
Software Engineering, University of Canterbury,
New Zealand (2003)

Killourhy, K. S., Maxion, R. A., Tan, K. M. C.: A
Defense-Centric Taxonomy Based on Attack
Manifestations. In: International Conference on
Dependable Systems and Networks. pp. 91 — 100.
IEEE Press, Los Alamitos, CA (2004)

Igure, V., Williams, R.: Taxonomies of Attacks
and Vulnerabilities in Computer Systems. J.
IEEE Communications Surveys and Tutorials.
Volume 10, Issue 1. 6 — 19 (2008)

Shahriar, H., Zulkernine, M.: Taxonomy and
Classification of Automatic Monitoring of
Program Security Vulnerability Exploitations. J.
Systems and Software 84, 250--269 (2011)
Sotirov, A. I.: Automatic Vulnerability Detection
Using Static Source Code Analysis. M. Sc.
Thesis. University of Alabama (2005)

Moore, H. D.: Exploiting Vulnerabilities. In:
Secure Application Development
(SECAPPDEV). Secappdev.org (2007)
Metasploit Penetration Testing Framework,
http://www.metasploit.com/framework/modules/
Symantec Threat Explorer.
http://www.symantec.com/business/security resp
onse/threatexplorer/vulnerabilities.jsp

Wagner, D.: Static Analysis and Computer
Security: New Techniques for Software
Assurance. Phd. Thesis. University of California,
Berkeley (2000)

Security Development Lifecycle (SDL) Banned
Function Calls. http://msdn.microsoft.com/en-
us/library/bb288454.aspx

Stanford University: Pintos Project.
http://www.stanford.edu/class/cs140/projects/pint
os/pintos.html#SEC_Top
Secunia
http://secunia.com/advisories/
Engler, D.: How to find lots of bugs in real code

Advisories.

with system-specific static analysis.
http://www.stanford.edu/class/cs343/mc-
cs343.pdf

Ashcraft, K., Engler, D.: Using Programmer-
written Compiler Extensions to Catch Security
Holes.IEEE Symposium on Security And
Privacy, pp. 143--159 (2002)

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

Red Hat Bugzilla: Bug 546621.
https://bugzilla.redhat.com/show_bug.cgi?id=546
621

National Vulnerability Database: Vulnerability
Summary for CVE-2010-4409.
http://web.nvd.nist.gov/view/vuln/detail ?vulnld=
CVE-2010-4409

Integer Overflow. http://cve.mitre.org/cgi-
bin/cvekey.cgi?keyword=Integer+Overflow
CWE-190: Integer Overflow or Wraparound.
http://cwe.mitre.org/data/definitions/190.html
Richarte, G.: Multiple Vulnerabilities in Stack

Smashing Protection Technologies. Security
Advisory, Core Labs (2002)
Stack Overflow.

http://www.owasp.org/index.php/Stack overflow
Lhee, K., Chapin, S. J.: Type-Assisted Dynamic
Buffer Overflow Detection. In: 11th USENIX
Security Symposium. USENIX Association, CA,

USA (2002)
Nelilen, J.: Buffer Overflows for Dummies.
SANS InfoSec Reading Room -

Threats/Vulnerabilities. SANS Institute (2003)
Nergal: The Advanced Return-into-lib(c)
Exploits. Phrack Magazine. Volume 11, Issue 58,
(2001)

Using Environment for Returning Into Lib C.
http://www.securiteam.com/securityreviews/SHP
020A6MG.html

Grenier, L. A.: Practical
Metasploit Framework (2002)
Akritidis, P., Cadar, C., Raiciu, C., Costa, M.,
Castro, M.: Preventing Memory Error Exploits
with WIT. In: IEEE Symposium on Security and
Privacy. pp. 263--277. (2008)

Tevis, J. J., Hamilton, J. A.: Methods for the
Prevention, Detection and Removal of Software
Security Vulnerabilities. In: 42nd annual
Southeast Regional Conference. pp. 197--202.
(2004)

SecurityFocus.
http://www.securityfocus.com/archive/1/515362
Microsoft ~ Security ~ Bulletin ~ MS03-029.
http://www.microsoft.com/technet/security/bullet
in/ms03-029.mspx

iDefense Labs Public Advisory: 06.12.07.
http://labs.idefense.com/intelligence/vulnerabiliti
es/display.php?id=542

CVE-2005-3828.
http://www.cvedetails.com/cve/CVE-2005-3848/
Testing for Heap Overflow.
http://www.owasp.org/index.php/Testing_for He
ap_Overflow

Code Auditing.

Double Free.
http://www.owasp.org/index.php/Double Free
CWE-415: Double Free.

http://cwe.mitre.org/data/definitions/415.html
Kolmonen, L.: Securing Network Software using
Static Analysis. In: Seminar on Network
Security. Helsinki University of Technology
(2007)

663

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 652-664
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

Nagy, C., Mancoridis, S.: Static Security
Analysis Based on Input-related Software Faults.
In: European Conference on Software
Maintenance and Reengineering. pp. 37--46.
IEEE Computer Society (2009)

Durden, T.: Automated Vulnerability Auditing in
Machine Code. Phrack Magazine. Issue 64
(2007)

Michael, C., Lavenhar, S. R.: Source Code
Analysis Tools — Overview. Homeland Security
(2006)

Wagner, D., Foster, J. S., Brewer, E. A., Aiken,
A.: A First Step Towards Automated Detection of
Buffer Overrun Vulnerabilities. In: Network and
Distributed System Security (2000)

C Language Issues for Application Security.
http://www.informit.com/articles/article.aspx?p=
686170&seqNum=6

Pozza, D., Sisto, R. : A Lightweight Security
Analyzer inside GCC. In: 3rd International
Conference on Availability, Reliability and
Security. pp. 851--858. Barcelona (2008)

Morin, J.: Type Conversion Errors. In: Black Hat.
USA (2007)

FFmpeg Type Conversion Vulnerability.
http://securityreason.com/securityalert/5033
CWE-704: Incorrect Type Conversion or Cast.
http://cwe.mitre.org/data/definitions/704.html
CWE-195: Signed to Unsigned Conversion Error.
http://cwe.mitre.org/data/definitions/195.html
STR34-C. Cast characters to unsigned char
before converting to larger integer sizes.
https://www.securecoding.cert.org/confluence/dis
play/seccode/STR34-
C.+Cast+characterstto+unsigned-+char+before+c
onverting+to+largertinteger+sizes

Black, P. E., Kass, M., Kog, M.: Source Code
Security Analysis Tool Functional Specification
Version 1.0. In: NIST Special Publication 500-
268. (2007)

Seacord, R. C.: The CERT C Secure Coding
Standard. Addison-Wesley Professional (2008)
Unintentional Pointer Scaling.
http://www.owasp.org/index.php/Unintentional p
ointer_scaling

Uninitialized variable.
http://en.wikipedia.org/wiki/Uninitialized_variabl
e

Eight C++ programming mistakes the compiler
won’t catch. http://www.learncpp.com/cpp-
programming/eight-c-programming-mistakes-the-
compiler-wont-catch/

Uninitialized Variable.
http://www.owasp.org/index.php/Uninitialized V
ariable

Flake, H.: Attacks on Uninitialized Local
Variables. Black Hat Federal (2006)

CWE-170: Improper Null = Termination.
http://cwe.mitre.org/data/definitions/170.html

82.

&3.

84.

Microsoft ~ Security Bulletin =~ MS09-056.
http://www.microsoft.com/technet/security/bullet
in/ms09-056.mspx

CVE-2007-0042. http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2007-0042
SolarDesigner: Getting around non-executable
stack (and fix). Bugtraq Mailing List.
http://www.securityfocus.com/archive/1/7480

664

