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Abstract-Ant Colony Optimization (ACO) is a bio-inspired 

algorithm extensively applied in optimization problems. The 
performance of Network-on-Chip (NoC) is generally dominated 
by traffic distribution and routing. With more precise network 
information for path selection by using pheromone, ACO-based 
adaptive routing has higher potential to overcome the unbalance 

and unpredictable traffic load. On the other hand, the 
implementation cost of ACO is in general too high to store 
network information in pheromone memory, which is a routing 
table of all destination-channel pairs. We propose an ACO-based 

Cascaded Adaptive Routing (ACO-CAR) by combining two 
features: 1) table reforming by eliminating redundant 
information of far destinations from full routing table, and 2) 
adaptive searching of cascaded point for more precise network 

information. Our experimental results show that ACO-CAR has 
lower latency and higher saturation throughput, and can be 
implemented with 19.05% memory of full routing table. 

Keywords- Network-on-Chip (NoC); Ant Colony Optimization 
(ACO); Adaptive Routing; Selection Function; Traffic Balancing; 

I. INTRODUCTION 

With the advances of the semiconductor technology, the 
increasing complexity and delay of interconnection dominate 
the performance of System-on-Chip (SoC). To provide more 
efficient interconnections and accommodate data transfer 
requirements, Network-on-Chip (NoC) has been proposed as a 
flexible, scalable and reusable solution [1][2]. However, the 
performance of NoC is dominated by traffic distribution [3]. As 
the size of the system scales up, the traffic load becomes an 
unbalance and unpredictable distribution with the diverse 
applications. Hence, the traffic is prone to be congested due to 
that the packets are blocked and continue to hold all the 
channels. The increased latency brings about the problem of 
performance degradation in real-time application. Therefore, 
effective routing is an essential approach to deal with traffic 
congestion. 

Routing algorithm determines a path that each packet is 
transferred from a source to a destination in NoC systems. 
Adaptive routing is composed of routing function and selection 
function. Firstly, the routing function returns a set of output 
channels based on the turn models [4]. Then, the selection 
function chooses an output channel of the candidate channels 
from the routing function according to the different network 
information. Obtaining more detailed network information can 
improve the selection efficiency and the balance of traffic 
distribution. Therefore, the selection function affects the 
performance critically for all adaptive routing algorithms [5]. 
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In order to make traffic more balance, Ant Colony 
Optimization (ACO)-based adaptive routing is proposed in 
NoC systems [6]. ACO is a bio-inspired algorithm that imitates 
the process of an ant colony that fmds the shortest path from 
their nest to a food. Ants diffuse the pheromone on the path to 
communicate with each other, and the pheromone is 
accumulated faster on the shorter path. In the long run, ants can 
reach to the food with the shortest path. ACO is extensively 
applied in optimization problems [7][8]. ACO can also enhance 
selection efficiency with the current and the historical local 
buffer state for traffic balancing. 

The implementation cost of ACO-based adaptive routing, 
however, is too high to store the network information 
in pheromone memory, which is a table of all destination­
channel pairs. With the increased size of NoC scale, it becomes 
infeasible since the memory cost and the table access time 
grows significantly. Besides, the power consumption also 
grows with the table size. The challenge of this paper is to 
implement ACO-based adaptive routing with less memory and 
to balance the traffic load. 

In this paper, we propose an ACO-based cascaded adaptive 
routing (ACO-CAR) for cost reduction and traffic balancing is 
shown as Fig. 1. The contributions are listed as following: 

• Table-reformed technique diminishes the size of routing 
tables and ensures the reliability of network information. 

• Cascaded routing with adaptive searching of cascaded 
point for more precise network information to balance 
traffic. 

From our experiments, the cost of routing table can be reduced 
by 80.95% with proposed table-reformed technique. Moreover, 
ACO-CAR has higher saturation throughput, with an 
improvement from 16.67% to 40% compared to other selection 
functions. It can spread the traffic load and make network load 
more balanced. 



II. REvIEW OF ADAPTIVE ROUTING 

In this section, fIrst we review the adaptive routing. Then 
we introduce the ACO-based adaptive routing [6][7] and the 
relation between the traffic balancing and implementation cost. 
Moreover, the problem of cost of ACO-based adaptive routing 
is formulated as a mathematical programming model. 

A. Adaptive Routing 
In adaptive routing, the routing function provides the path 

diversity for the selection function. A good selection function 
helps to spread the traffic and make network load more 
balanced according to the detailed network information. The 
network information can be classifIed as spatial and temporal 
information. Spatial network information is the buffer state of 
the different directions. Local information and regional 
information are the output buffer length of local router and 
neighbor routers respectively. Temporal information consists 
of current and historical information. Selection function bases 
on the present condition or the past experience to choose a path. 
Therefore, different selection functions make use of the 
different combinations of network information. 

Adaptive routings can be classifIed as congestion­
oblivious and congestion-aware according to whether selection 
functions consider the output link demand or not [9]. The 
congestion-oblivious adaptive routing does not take account of 
the output link status. Random selection function randomly 
chooses an output channel from the candidate channels [10], 
which is simple to implement, but it can not balance traffic 
load. The congestion-aware adaptive routing [9] takes account 
of the output link status. Therefore, these selection functions 
can adjust path selection with the time-variant congestion 
status. Output buffer length (OBL) selection function chooses 
an output channel with the shortest occupied buffer length [11]. 
OBL makes a routing decision with the current local network 
information. Neighbors-on-Path (NoP) selection function 
chooses an output channel that has the shortest occupied buffer 
length of neighbor and local router on routing path [11]. That is 
making a routing decision with the current regional network 
information. Using only current spatial network information in 
making routing decisions is efficient for local traffic balance, 
but it cannot guarantee global balance [14]. 

B. ACO-based Adaptive Routing 
ACO-based adaptive routing can be defmed as an adaptive 

routing with ACO-based selection function is shown as Fig. 2. 
It has two types of packet: ant packet and data packet. ACO­
based routing uses ant packet for training and data packet for 
normal payload. The difference between the ant packet and 
data packet is the head flit. The head flit of ant packet consists 
of ant index and the information for routing. Besides, ant 
packets also carry the payload for transferring data. Ant 
packets and data packets have the same priority that makes ant 
packets have similar network experience as data packets. 

ACO-based selection function chooses a better output 
channel according to the pheromone of candidate channels. 
The pheromone is derived from the current and the historical 
local network information and it is called as the state transition 
rule is shown by (1), where} is the channel index (North, East, 
South, and West) and d is the destination index. 

318 

Candidate. 
--"' Output ; 

Ant Packet Routing Channels; 

Data �a� Function 

ACO-based Selection Function 

P(1.d) 
P(2.dl 

l. 
p(.,cf) 

The State Transition 

P'(j,d)= P(j,d)+ aLj 
l+aQN. I -l) 

...................................................... 

Figure 2.ACO-based adaptive routing. 

Better 
Output 
Channel 

The normalized pheromone P' 0, d) can be viewed as the 
probability of selecting channel } for destination d. The old 
pheromone PO,d) is the historical local network information. L; 
is the current local free buffer length of channel}, and Nk is the 
number of channels of router k . 

(1) 

a is weighting coefficient for the current and the historical local 
network information. ACO needs a table for storing the 
historical local network information of all destination-channel 
pairs, which is shown in Table I. 

TABLE I. ROUTING TABLE OF ACO-BASED ADAPTIVE ROUTING. 

� 
Node 1 2 d Output ... 

Channel 
Nl P 11 P02 ... P l.cr 
E(2) P(2,l) P(2,2) ... P(2,d) 
S3 PO 1 P32 . .. P 3,cr 
W(4) P(4,l) P(4,2) ... P(4,d) 

At the training phase of the table, there are two equations 
for updating pheromone. For each router, the updating is based 
on the destination index d in the head flit of ant packet. d 
determines the column chosen to update, The pheromone of 
selected channel} in column d is increased by (2) and the other 
pheromones in column d are decreased by (3). r is the 
reinforcement factor indicating the congestion. 

P(j,d)�P(j,d)+r(l - P(j,d)), }eseleted channel (2) 

P(j,d)�P(j,d) - rP(j,d), }�seleted channel (3) 

ACO-based selection function has the potential to make a 
better decision than other congestion-aware selections, Because 
the historical network information can stand for the time­
variant statistic traffic distribution in predicting the neighbor 
traffic status and the current network information can adjust the 
selection dynamically according to the local buffer state. The 
major problem of ACO-based adaptive routing is that the size 
of table increases tremendously as the scale of NoC grows. The 
column number of table is equal to the router number of NoC 
except local router, and row number is equal to the channel 
number of each router. Besides, every router has the table, so it 
is duplicated by the number of routers. Therefore, the cost of 
routing table is too high to implement in NoC systems. 
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C. Formulation of The Cost of ACO-based Adaptive Routing 
Given a k-ary n-mesh network topology T(k,n), an 

application graph [3] and a routing function R(i, Src, Dst) at 
local router i for all packets are transferred from source router 
Src to destination router Dst. Use ACO-based selection 
function ACOSel(ChSet,Info) to select a better path PseliJ of 
local router i from the candidate channel sets ChSet with the 
network information Info; 

Find the minimum implementation cost of routing table 
with full routing table size FRTS(k,n), the table compression 
ratio TCR(size(shape)) and the number of bits NB is shown as 
Fig. 3. TCR is a function of the size of specific shape of 
observation region. And it is derived from the reformed table 
size divided by full table size; 

Such that the path average latency L(Pseli)) with table­
reformed technique is less than or equal to Lfull routing table. 

The cost problem of ACO-based adative routing can be 
formulated as follows: 

min{FRTS(k,n)x TCR(size(shape)) x NB} 

subject to L L(P.sel(i))::S; Lfull routing table' 
ierouters on the path 

P.sel(i) = ACOSel(ChSet,/nfo(TCR,NB)), 

ChSet = R(i,Src,Dst). 

(4) 

(5) 

(6) 

(7) 

Intuitively, the objective function (4) mmlmlzes the 
product of full table size, table compression ratio and the 
number of bits. Constraint (5) sets the bound for the table­
reformed average latency is less than or equal to the average 
latency with full routing table. Constraint (6) shows a relation 
between ACO-based selection function and the path. And 
Constraint (7) shows a relation between the routing function 
and the candidate channels. In brief, we can reduce the TCR 
and NB to minimize routing table cost. Moreover, we use the 
cascaded routing with adaptive searching to ensure the 
reliability of Info for a better routing decision and conform to 
the bound of average latency. 

III. PROPOSED ACO-BASED CASCADED ADAPTIVE 
ROUTING 

ACO-CAR which considers the implementation cost and 
balances the traffic distribution. The table-reformed technique 
is proposed to reduce the TCR to minimize routing table cost. 
Additionally, to search cascaded point for cascaded routing, an 
adaptive searching algorithm is also proposed. 
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A. Table-Reformed Technique 
In order to reduce the size of table, we propose table 

reforming technique to eliminate the redundant information 
from table. The state transition probabilities are stored in the 
table that includes the information of all destinations. However, 
the state transition probability of far destinations is derived 
from traffic status of local router. The information becomes an 
unnecessary and ineffective index in making a routing decision 
for local router. Hence, we can eliminate the information of far 
destinations from our table to diminish memory cost and try to 
keep the performance with negligible degradation. 

Original observation region of routing table is all 
destinations in NoC and shape of observation region is square 
as shown in Fig. 3. We reform the observation region shape of 
routing table from square to rhombus which is shown as Fig. 4. 
Rhombus routing table can keep the same observation window 
to obtain the reliable information. And the hop counts from the 
boundary routers to the center router are the same, which is 
similar to the real ants diffusing pheromone toward every 
direction. 

We define that the observation window size Wob as the 
hop counts between the center and vertices of rhombus. And 
the defmition of minimum observation window size Wob. min 
with the k-ary n-mesh network topology is as follows: 

{ In: J Wob.min = l k 1 J n(
'6 - 6k

) , 

k is even 
(8) 

k is odd 

This concept stands for maximum hop counts between the 
opposite vertices of rhombus routing table, which is average 
hop counts over all source-destination pairs. In brief, the 
observation region can reserve the reliable pheromone within 
this range to make a routing decision with negligible 
degradation of performance. Moreover, TCR of rhombus in k­
ary 2-mesh is given by 

(W )2+(W +1)2-1 
TCR(size(rhombus)) = 

ob 
k 2

0b 
(9) ( ) -1 

Hence, the table cost is TCR multiplied by full table cost. 
Besides, the value of TCR value is always less than one. For 
example, given a 8-ary 2-mesh network topology. By (8) and 
(9), Wob. min is 2 and TCR is approximately equal to 0.19. 
Therefore, we reduce 81% cost of table size with 0.38% 
degradation of performance. The results are verified in section 
IV. 

Rhombus 
Observation 

Region 

Figure 4. Observation region is rhombus. 
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B. Cascaded Routing with Adaptive Searching o/Cascaded 
Point 
Since some infonnation of far destinations is not kept in our 

table by table-refonned technique; we cannot obtain the 
pheromone infonnation directly from the observation region of 
local router. The routing algorithm does not discover a routing 
path in one-step for the far destination. Therefore, we propose 
the cascaded routing to overcome this problem. Cascaded point 
is a temporary destination between the local router and the 
destination. The packets are passed through the cascaded point 
and then routed to the destination. The flow and example of 
cascaded routing are shown as Fig. 5 and Fig. 6. The detailed 
executions of this flow and example are described as follows: 
• Step1: We can check whether the destination is in the 

observation region. 
• Step2: If the destination does not belong to the 

observation region, we need to search a cascaded point 
and route a packet to it. 

• Step3: Then we can check whether the destination is in 
the observation region again. If the destination belongs 
to the observation region, the packet is routed to the 
destination directly and this process is tenninated. 

The challenge of cascaded routing is how to detennine 
cascaded points at ant training phase. Intuitively, the fIXed and 
random searching is used for search the cascaded point is 
shown as Fig. 7. Fixed searching chooses the cascaded point 
that is a vertex near the destination. Random searching chooses 
the cascaded point from the candidate points are between the 
source and destination with the minimal path. However, these 
searching methods do not consider the traffic status. The 
packets that might be forwarded to the busy cascaded point that 
brings about the traffic congestion. In order to search a better 
cascaded point, adaptive searching detennines the cascaded 
point that has minimum number of ant packet being passed 
through a router in the observation region. The design concept 
based on the load-balancing and high degrees of adaptivity. It 
balances the number of packets being route through a router at 
the same time and increases adaptivity for the searching of 
cascaded point. 

The number of training for routing table can affect the 
perfonnance. By adaptive searching, we can balance the 
number of training for every destination-channel pair. 
Therefore, the reliable network infonnation is constructed in 
the routing table. To summarize, cascaded routing can make a 
better routing decision with adaptive searching of cascaded 
point for more precise network infonnation and confonn to the 
bound of average latency which is listed as (5). 

IV. PERFORMANCE EV ALUA nON 

In order to minimize the implementation cost function as 
shown in (4), we can reduce the table compression ratio TCR 
and the number of bits NB. Firstly, we analyze the relation 
between the TCR of rhombus and perfonnance in Experiment I. 
Then the analysis of NB and perfonnance are discussed in 
Experiment 2. In Experiment 3, the perfonnance of adaptive 
searching is compared with fIXed searching and random 
searching. In Experiment 4, the perfonnance of table-refonned 
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ACO-CAR is compared with the different selection functions, 
such as random, OBL and NoP under the condition of coupling 
with the same routing function. Finally, we show the statistical 
traffic load distribution (STLD) [12] of different selection 
functions in Experiment 5. According to the distribution, we 
can predict whether the traffic loads of a network are balanced 
or not. 

The experiments are evaluated by the NoC simulator, 
Noxim [13]. We construct a 8-ary 2-mesh network topology. 
The system runs with wormhole switching mechanism [14] and 
round-robin arbitration. And we use the odd-even routing 
function [4] in our experiments. Each channel has an input 
queuing buffer with size of 4 flits and each packet has 8 flits. 
Besides, our experiments uses the uniform distribution and 
transpose 1 distribution to evaluate perfonnance. The 
maximum channel load of transpose1 distribution is more 
serious than uniform distribution [14]. Therefore, we will focus 
on the simulation results of transpose1 distribution in our 
experiments. And the simulation results of uniform distribution 
are confonned the perfonnance of expectation. The time 
distribution of traffic is Poisson distribution. For each run of 
simulation is 52,000 cycles and the flrst 2,000 cycles is warm­
up time of NoC system. The average latency and the saturation 
throughput are used as perfonnance metric for our experiments. 
The defmition of saturation throughput is where average 
latency is equal to twice of the zero-load latency [15]. 

Step 3 
: ..................... � 

: ACO-CAR ..... End 

: '-----" 
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Check 
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Figure 5. The flow of cascaded routing. 
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Experiment 1: Analysis o/Table Compression Ratio 
In order to reduce TCR to minimize the implementation 

cost, we analyze the relation between the TCR of rhombus and 
saturation throughput of a 8 x 8 mesh. The traffic model is 

transpose1 distribution. The process of experiment is to 
change the value of observation window size and record each 
saturation throughput. Fig. 8 shows the different cases of 
observation window size in 8 x 8 mesh. We can find the 

minimum TCR with 0.38% performance degradation, when 
Wab is 2 that equal to Wab,min derived by (8). And TCR is 
0.1905, it is means that the size of routing table can be 
reduced by 80.95%. 

Experiment 2: Analysis o/Number o/Bits 
In order to reduce NB for the minimization of 

implementation cost, we analyze the relation between the 
number of bits and saturation throughput for 8 x 8 mesh. The 

traffic model is transpose1 distribution. The process of 
experiment is to change the number of bits and record each 
saturation throughput. Fig. 9 shows the different cases of NB 
in 8 x 8 mesh. We can fmd that the saturated number of bits is 

5 with 0.384% degradations of performance. In fact, we can 
choose 4 as our number of bits to reduce implementation cost 
with 2.29% performance degradation. However, the number of 
bits is 3 that bring about the 10% performance degradation. It 
is not feasible to NoC design. We choose 4 bits to implement 
our system in 8 x 8 mesh. 

Experiment 3: Tajjic o/Different Searching Methods 0/ 
Cascaded Routing 
In order to make a better routing decision and construct the 

reliable network information in the routing table, we analyze 
the relation between the different searching methods and 
average latency for 8 x 8 mesh. We choose TCR to be 0.1905 

and NB to be 4 according to the experiments in Experiment 1 
and Experiment 2. The traffic model is transpose 1 distribution. 
Fig. 10 shows the average latency about fixed, random, and 
adaptive searching. We can verify that adaptive searching 
performs better than other searching methods. Because the 
fIXed searching always sends packets to the same cascaded 
point of vertex. It brings about hotspot traffic load on this 
cascaded point. And random searching does not consider the 
traffic load of cascaded point and packets that might be 
forwarded to the busy cascaded point with degradation of 
performance. To summarize, the improvements of adaptive 
searching to fIXed searching and random searching are 39.6% 
and 12% in terms of saturation throughput respectively. 

Experiment 4: Tajjic 0/ Different Selection Functions 
The performance of ACO-CAR is compared with the 

random, OBL and NoP selection functions that are coupled 
with odd-even routing function. Besides, we compare the 
ACO-CAR and ACO selection with full routing table to ensure 
the relation of average latency is conformed to (5). The 
topology is 8 x 8 mesh and we choose TCR to be 0.1905 and 

NB to be 4 according to the experiments in Experiment 1 and 
Experiment 2. Fig. 11 shows the average latency of different 
selection functions with the traffic of transpose1 distribution. 
ACO-CAR has lower average latency and higher saturation 
throughput than other selection functions. The improvements to 

321 

random, OBL, and NoP are 40%, 33.33% and 16.67% in terms 
of saturation throughput respectively. Fig. 12 shows the 
average latency of ACO-CAR and ACO selection with full 
routing table. And the average latency of ACO-CAR is less 
than or equal to the average latency of ACO selection with full 
routing table. To summarize, we minimize routing table cost by 
the reduced TCR and NB, and conform to the bound of average 
latency. 

Experiment 5: Statistical Trajjic Load Distribution 
STLD represents the number of packets of all source­

destination pairs passing through the corresponding routers 
[12]. According to the STLD, we can analyze whether the 
traffic loads of a network are balanced or not. Moreover, we 
use the standard deviation (<J) of traffic load to estimate the 
network performance. We consider the center hotspot trajjic 
distribution that 4 hotspot nodes on center of 8 x 8 mesh with 

20 % hotspot traffic load. Fig. 13 shows the traffic load 
distribution of NoP selection and ACO-CAR with odd-even 
routing function. The deep and light colors in Fig. 13 stand for 
the heavy and light traffic load. Hence, there are dense loads on 
the center of mesh for NoP selection. In contrast, ACO-CAR 
results in balanced statistical traffic loads not only around the 
hotspot nodes but also on the whole network. Moreover, 
standard deviations of loads are 603 and 432 of NoP and ACO­
CAR respectively. ACO-CAR can spread traffic load into the 
different paths evenly for traffic balancing. 
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V. CONCLUSIONS 

In this paper, we propose an ACO-based Cascaded 
Adaptive Routing (ACO-CAR) for balancing the network load 
and reducing the implementation cost of routing table. The 
experiments have shown that the cost of routing table can be 
reduced by 80.95% with proposed table-reformed technique. 
Moreover, ACO-CAR has higher saturation throughput and 
gives 16.67% to 40% improvement compared to the random, 
OBL, and NoP selection function. According to the STLD, 
ACO-CAR can spread traffic load into the different paths 
evenly for traffic balancing. 
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