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Effective management of complex software projects depends on the ability to solve complex, subtle opti-
mization problems. Most studies on software project management do not pay enough attention to diffi-
cult problems such as employee-to-task assignments, which require optimal schedules and careful use of
resources. Commercial tools, such as Microsoft Project, assume that managers as users are capable of

assigning tasks to employees to achieve the efficiency of resource utilization, while the project continu-
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ally evolves. Our earlier work applied genetic algorithms (GAs) to these problems. This paper extends that
work, introducing a new, richer model that is capable of more realistically simulating real-world situa-
tions. The new model is described along with a new GA that produces optimal or near-optimal schedules.
Simulation results show that this new model enhances the ability of GA-based approaches, while provid-
ing decision support under more realistic conditions.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Experienced software project managers understand the intrin-
sic difficulty of managing a complex project involving a large team
of engineers and developers working together in a dynamic, ever-
evolving environment with volatile project parameters. Task
assignments and scheduling have always been crucial to the soft-
ware development process, and the quality of those assignments
greatly influences the success of a project.

The main problem with managing a large software project is
that it is tedious and error-prone [38], oftentimes requiring specific
information to support it. Frequently, the information needed to
optimize performance is missing. Common project management
tools [1] such as Microsoft Project are not effective at managing
optimization problems. One of the main problems of these tools
is that they use schedule representations that are “inadequate to
model the evolutionary and concurrent nature of software devel-
opment” [2,3].

To the best of our knowledge, [2] represented the first attempt
to develop a richer representation of software project manage-
ment, one capable of supporting a genetic algorithm based optimi-
zation approach. Improvements to the original model (i.e. SPM-Net
[2] or PM-Net [4]) were proposed in [5]. Genetic algorithms (GAs),
already commonly used in many domains of optimization research

* Corresponding author. Tel.: +1 5154514458.
E-mail address: hsinyij@iastate.edu (H.-y. Jiang).

0950-5849/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2008.03.002

[6,7], provide better solutions to complex project management
problems.

The main goal of the current work is to extend and improve the
model in [5], which will be briefly reviewed, making it more pre-
cise and realistic. GA is still our choice for optimization, but the
internal “genome representation”, i.e. the model structure and
parameters, has been greatly improved. Complex project manage-
ment schemes that exist in the real world but were not represent-
able in the old model can now be presented. The added parameters
increase the user’s control of the model. In addition, concepts from
software cost estimation techniques are incorporated into the
model.

This paper is organized as follows: Section 2 introduces some
basic concepts on GA; Section 3 gives a literature review on sched-
uling in software project management; Section 4 gives an overview
of the model in [5] and suggests improvements in several aspects;
Section 5 describes the new and improved model in detail; Section
6 explores properties of the new model and collects numerical
data; and Section 7 outlines the directions for future research.

2. Genetic algorithms

GA is a particular type of evolutionary algorithms introduced in
the 1970s by John Holland [12]. Such algorithms attempt to simu-
late natural evolution and form a populous selection of possible
solutions by exploring the search space in an attempt to find
near-optimal solutions to optimization problems. They do not
exhaustively search the entire solution space, but instead start
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with a small population of possible solutions and then evolve to-
wards better solutions. In the end, fairly good though not necessar-
ily optimal solutions for the optimization problem will be
produced. The outline of the algorithm is shown below:

1. Find representations of possible solutions, called genomes,
which are composed of genes chosen so that by changing the
genes, all possible solutions can be represented.

2. Map each genome to a real number using a fitness function. The
goal is to find a genome that maximizes the fitness function.

3. Randomly generate a set of genomes called the initial
population.

4, Repeat the following steps until a stopping criterion is met:

(a) Selection: select a subset of the population for use in the
next steps.

(b) Mutation: produce a new genome from an older one by
changing some of its genes.

(c) Crossover: produce a new genome by combining genes from
two older ones.

(d) Combination: build a new population using some of the old
and new genomes.

Some examples of stopping criteria are:

(a) A certain number of generations have been generated.

(b) The best individual in the current generation has a high
enough fitness value.

(¢) The identity of the best individual has not changed for a
number of consecutive generations.

GAs do not guarantee the discovery of the global optimum.
However, in many applications a near-optimal solution is often
acceptable. The representation chosen for the genome is pivotal
to the performance of GAs [37].

3. Related work

Generally speaking, our work is to investigate a strategy to as-
sign employees to tasks, maximize the quality of project schedules,
and minimize the total project cost at the same time. Benefiting
from the computed schedule of task assignments and durations,
thanks to the existence of GA, project managers can carry out the
balancing acts to minimize project costs while achieving other pro-
ject objectives. We will report our survey of the related work in
two major categories: software project effort estimation, and
scheduling.

3.1. Software project effort estimation

It has been extremely difficult to precisely estimate the total ef-
fort demanded for sustaining the lifecycle of a software system.
Until now, it is still largely an open issue for researchers although
many estimation models had been proposed to predict the effort to
construct and maintain software. Among them, models designed
with Function Point Analysis (FPA) and Source Lines of Code (SLOC)
are commonly seen in the literature.

As a historical note, A.J. Albrecht of IBM devised the function
point metric in 1979 [14,15]. FPA became a standard method rec-
ognized by ISO, renamed as the Functional Size Measurement, to
measure the functional size of an information system. It is calcu-
lated based on a requirement-centered view of software and is
platform-independent [16,17]. FPA can be employed to determine
the software size for cost estimating and to find the testing effort
required in the information system [15]. As a result, various orga-
nizations adopted FPA as the designated measurement [17-20].
Albrecht and Gaffney also suggested the use of function points
(FPs) to estimate SLOC and then utilize SLOC to estimate the work

effort [18]. Later, Felfernig and Salbrechter described the applica-
tion and extension of FPA for effort estimation in the development
of knowledge-based configuration systems [17]. Moreover, Nies-
sink and Ahn et al. proposed a model based on FPA to predict soft-
ware maintenance effort [19,20].

On the other hand, SLOC is used to measure the size of a soft-
ware program by counting the number of (non-commentary) lines
in the text of the source code of the program. It is typically em-
ployed to estimate the effort required to develop a program. A
commonly known model called COCOMO calculates the effort (in
person-months) based on SLOC [21]. Its second generation model,
called COCOMO II, is an improvement of COCOMO. It employs both
SLOC and unadjusted function points to express sizes of software
[22]. As exemplified from the measurements of project sizes in
both the original COCOMO and COCOMO II, most researchers be-
lieve that there exists a high degree correlation between FPA and
SLOC [18] [22].

Other estimation methods also exist. For example, analogy-
based estimation, seen in some of the existing work, calculates
the distance between the software project being estimated
and the historical software project data [23]. After having calcu-
lated the distances, it retrieves data of the most similar projects
based on the calculated distance, and estimates the effort based
on those similar projects [23]. In recent years, Huang and Chiu ap-
plied GAs to determine the appropriate weighted similarity mea-
sures of effort drivers used in analogy-based software effort
estimation models [24]. Later, they proposed an adjusted anal-
ogy-based software effort estimation model which adopted GA to
adjust the effort based on the similarity distances [25]. The exper-
imental results obtained from the work of Huang and Chiu sug-
gested that such methods indeed helped improve the accuracy of
effort estimation.

Bayesian analysis is another methodology used to predict soft-
ware effort. The results in Pendharkar’s work indicated that the
probabilistic forecasting model allows managers to estimate joint
probability distribution over different software effort estimations
(i.e., the effort estimations in terms of different concerns) [26]. Fol-
lowing that, project managers can use the joint probability distri-
bution to develop a cumulative probability distribution, which in
turn helps them estimate the uncertainty of the extent as to how
the actual project effort may be greater than the estimated effort.

In fact, most of the existing software project effort estimation
models can be employed to support the approach presented in this
paper. For the purpose of illustration, without loss of generality,
COCOMO will be most often utilized for the rest of the paper.

3.2. Scheduling

Scheduling problems are NP-hard with extremely complex
combinatorial optimization issues. Research on finding solutions
of resource-constrained project scheduling problems (RCPSPs)
has progressed for several decades. The methods form two distinct
classes: exact methods and heuristic methods. Exact methods in-
clude backtracking, branch and bound, critical path method with
its variations, dynamic programming and implicit enumeration.
Heuristic methods, which are popular in scheduling, include simu-
lated annealing (SA) [10], Tabu search (TS) [11], and GA [12]. All of
these methods may be further categorized into stochastic and
deterministic approaches [13]. GA belongs to the class of stochastic
search methods.

3.2.1. Project scheduling with genetic algorithms

In recent years, researchers in software engineering found that
genetic algorithm (GA) is a feasible optimization method for their
problem domains, thus it is used for an increasing number of
applications.
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Hegazy et al. proposed a model for cost optimization and dy-
namic project control [36]. The model incorporates an integrated
formulation for estimating, scheduling, resource management,
and cash-flow analysis. GAs are applied to allocate optional con-
struction methods for each activity. Although resource constraints
are also considered in this work, they did not consider much on hu-
man factors. Their focus is more on the best combination of con-
struction methods.

In 1996, Chan et al. suggested to solve resource scheduling
problems using genetic algorithm [8]. In their paper, an objective
function related to resources and constraints related to the prece-
dence of tasks are formed. However, the work was emphasized
more on the GA part, and did not discuss much on the success-
ful/failed factors of projects in scheduling.

Hindi et al. demonstrated that the evolutionary algorithm is
effective to solve RCPSPs [27]. An empirical study of 2370 instances
was conducted. The result showed that the algorithm is capable of
finding the best-known solution in 68% of the instances with an
average overall error rate of 0.95%.

Valls et al. proposed a hybrid GA for the RCPSP [28]. Although it
is helpful for the scheduling problem, the focus on their work is
based on the improvement of the algorithm itself, instead of the
concerns of the factors with projects.

Alba and Chicano have shown that GAs are quite flexible and
accurate for project scheduling, and regarded as an important tool
for automatic project management [29]. They provided the basic
idea on applying GA for automated task assignments. However,
in their model, the experiences and skills of employees are not dis-
tinguished. Moreover, changing employees are not allowed during
the project duration.

To achieve better performance, researchers continue to focus on
issues such as representation (direct and indirect) and operators
(initialization, mutation, and crossover). Depending on the specific
scheduling problem, the performance of GAs can vary greatly or
only by negligible amounts. Our previous model can be considered
as an early effort to apply GAs in the software project management
environment [5].

3.2.2. Project scheduling considering human resource factors

The philosophy of this paper on considering and analyzing more
human resource factors is similar to Plekhanova’s work [30]. In
that paper, it is asserted that in the mathematical theory of sched-
uling, resource capability factors are not considered as the factors
that influence the schedule since the resources are assumed to
be equal (i.e., they possess equal capabilities). However, in practice,
the most effective and efficient manner of resource allocation in
software projects should be founded on heuristic approaches that
consider varying capabilities.

As described in this paper, our new model introduces the time-
line axis, considers more human resource factors in project man-
agement than our previous model, and has the potential to become
a more practical model for project managers to adopt.

4. Overview of previous model

Using a task model, Chang et al. [5] described how to apply GAs
to find near-optimal schedules. In the task-based model, the repre-
sentation of a problem consists of:

(1) Representation of project: TPG = (V,E)
e The project is represented as a task precedence graph.
e A directed a cyclic graph where nodes (v € V) represent
tasks and edges (e € E) represent task precedence.
e Each task is associated with an estimated effort and the
required skills.

2) An employee database Denp with information of skills and
salary.

3) An objective function to evaluate the performance of a
schedule.

Genetic representation is an orthogonal 2D array with one
dimension for tasks and the other for employees. GA operators
are adopted from the C++ Genetic Algorithm Library (i.e. GAlib)
[31]. In this approach, scheduling is a two-stage process: the first
stage evaluates how a genome satisfies constraints; the second
stage evaluates the schedule performance of a genome. The sim-
plest objective function for such evaluations can be defined as:

Composite objective function = Validity" (OverLoadWeight /OverLoad
+ MoneyWeight /CostMoney
+ TimeWeight /CostTime).

Validity (validity of job assignments) is usually scored on a 0/1
basis - 0 if the assignments are invalid and 1 if they are valid. Over-
Load (minimum level of overtime) is the amount of time worked
beyond the individual overtime limit, which is summed over all
employees. CostMoney (minimum cost) is the total labor cost of
performing the project, which is computed using the labor rates
of each resource and the hours applied to the tasks. CostTime (min-
imum of time span) is the total time span required to finish the
project, from the start of the first task until the end of the last.
These three objectives share the same fitness function, to minimize
the appropriate input, i.e., overload, project costs, and time. The fit-
ness value is the summation of weighted component objective val-
ues. The remainder of this section examines some limitations of
the above task-based model.

4.1. Restrictions on tasks

In our earlier model, tasks were the basis of personnel assign-
ments and calculation of the fitness function. The fitness function
calculation imposed two restrictions in task assignments:

¢ A task must begin as early as conditions allow. That is, it begins
as soon as all preconditions are satisfied. However, in real-world
projects, it may sometimes be advantageous to delay a task.

e A task cannot be interrupted during its execution. In real-world
projects, however, there may be another emerging task that is
more critical to global fitness. In this case, it may be advanta-
geous to refocus efforts on the other task.

4.2. Restrictions on employee assignments

In the task-based model, it was assumed that employees
worked on an assigned task from its beginning to its end. It was
further assumed that, once assigned, an employee’s total effort
would be applied to the task. While it is often advantageous to re-
tain employees on a task to gain experience or maintain project
stability, it may sometimes be useful to remove an employee from
a task where learning has been significantly slowed or skills are not
a good match. The earlier model cannot support such re-assign-
ments and skills are not represented in sufficient detail to facilitate
assessment of skill matching.

4.3. “Mongolian Horde” strategy

Implicit in the assignment strategy of the earlier model is the
assumption that an unlimited number of suitably skilled employ-
ees can be applied to a task for as many hours per week as they
can legitimately work. The assumption that we can add people to
accelerate a task without any limit, also known as the Mongolian
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Horde strategy, is not realistic. Therefore, the effect of different
groups of employees and external consultants on task performance
and the impacts of coordinating their efforts must be considered
for more realistic situations.

4.4. Skill match and experience

To assign people with the skills required to tasks, (instead of
applying the “Mongolian Horde” strategy) the model must include
a representation of the suitability of employees to perform tasks.
The earlier model lacked the ability to assess workers’ expertise.
That is, in our earlier work, an employee either possessed a skill or
did not, and there was no notion illustrating the level of experience.

4.5. Different scales for objectives

In the fitness calculation, the three objectives of the fitness
function - the amount of time for overtime, cost, and total length
of time - are combined as a weighted sum. The weight of each
component is derived from experience. However, since the scales
of the objectives are different, some objectives may be ignored
while GA is processed due to the small scale. The model can be en-
hanced so that the three objectives are directly interpreted on a
common scale and can be simply summed with no weighting.
For example, overloads for employees can directly result in in-
creased cost and excessive duration (length of time) can be consid-
ered with a “penalty”. Moreover, total length of time can be
converted to cost.

5. Specification of the new model

To address the aforementioned shortcomings, the task-based
model [5] must be changed. Some changes, e.g. the specific charac-
teristics of employees and tasks, are direct enhancements to the
model and will be discussed later. A more fundamental change -
introduction of a time-line - had the potential for great impact
and thus will be discussed here. The “time” expands the two-
dimensional (task and employee) model into a three-dimensional
one, showing the effort of each employee applied to each task in
each time unit. The time-line became necessary due to the require-
ments to represent re-assignment of employees, learning, the sus-
pension and resumption of tasks, and the introduction of hard and
intermediate (that is, task-specific) deadlines.

5.1. Introduction of time-line and discussion of computation burden

Using a time-line (and thereby breaking down a task into smal-
ler components of time-sliced activity) solves the problems de-
scribed in Sections 4.1 and 4.2 by assigning employees to tasks
for discrete time units during the duration of a task, instead of
assigning them to the entire duration of the task. In this way, the
calculation of the fitness function can be performed at the time
of assignment, which allows us to incrementally update various
parameters (for example, skills of employees, cf. Section 4.4). In
implementing the time-line based model two decisions must be
made:

1. Quantum of the time-line. In theory, the granularity of the
time-line can be arbitrarily small, and the smaller the unit, the
more “precise” the model. Beyond a certain point, however, such
“precision” is impractical. Therefore the time unit (i.e. quantum)
should not be too small; for a small project, one week or one day
is acceptable while for a large project, a month or a calendar quar-
ter might be appropriate. We decided that ¢, time unit parameter,
is to be defined as the number of time units in a month. Thus, if the
time unit is a week, ¢ = 4.

2. Practical upper bound of the time dimension. To be realistic,
an upper bound for the duration of a project should be imposed.
For example, 1200 months (100 years) is definitely an upper bound
of time that no project will reach. For most projects, the upper
bound can be much smaller, a few years at most.

The introduction of a time-line to make the model more real-
istic means it will require more extensive computation than the
earlier task-based model. For the same number of tasks and
employees, the number of individual assignments in this model
will be B/U times greater than that of the task-based model,
where B is the upper bound of time, and U is the time unit.
Accordingly, the amount of computation required by this model
will also be roughly B/U times that of the task-based model. In
the experiments described herein, time quanta of months and a
maximum duration of three years were used. Smaller granulari-
ties are possible, with correspondingly increased computation
time. However, the impact is only linear, so the rate of increase
of the computational burden is much less than it would be for
an exhaustive search method.

5.2. Skill model

Numerical presentations represent skills similar to the model
used by Chang et al. [5]. In the new model, an employee can also
obtain a skill during the course of a project through training. The
definitions of the individual properties of employees are described
in the subsequent sections.

5.3. Employee models

An employee is represented by a numerical identifier (ID) and
many properties. One property is “type”, of which there are cur-
rently two values: “employee” or “contractor” (i.e., external con-
sultants). A contractor cannot receive any training (see Section
5.3.3). Other properties are described in the following sections.

5.3.1. Employee compensation model

A more complex compensation model is used here to convey
that employees may be paid at a different rate when working over-
time. Three rates are used in this model:

e Si00: The base salary for a month of work (where 100% repre-
sents one month), including any training time that can be
charged to the project. For training, see Section 5.3.3.

o S,ver- The relative rate for overtime work.

e hpax: The maximum number of hours the employee can work,
expressed as a percentage. Thus, 175 means the employee can-
not work over 175%.

Thus, the total payment for h work hours (measured as a per-
centage of full-time work hours in one time unit) is:

1 S100 X h% 0<h<g100
P =5 5100 100% + S x (= 100)% 100 < h < F
0 h > Amax

5.3.2. Employee skill list

An employee’s skill list is an array of proficiency score values,
with skill ID as index. A proficiency score value is a number be-
tween 0 and 5, with 0 indicating the employee does not possess
the skill and 5 indicating that he or she has total mastery of it. Pro-
ficiencies do not have to be integers. Fractional scores can also be
used. This mechanism is used to evaluate the proficiency of
employees in the skill areas required by a project, thus partially
solving the problems described in Section 4.4.
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5.3.3. Employee training model

In the previous task-based model, it was assumed that the
employees’ skill levels remain constant throughout the project.
The new model introduces “training” as means to improve skills,
with values of 0%, 25%, 50%, 75%, and 100% allowed monthly for
each employee. At the expense of additional computation over-
head, a finer grain of values is possible. Contractors cannot charge
for training in this manner. The cumulative training time of an em-
ployee for a skill s at the end of time unit m, T ain(m, s), is defined
as: Tyain(M,s) = 5 x S TrainHour(i,s). If an employee has a profi-
ciency of po for a specific skill at the beginning, the proficiency after
T hours of training will be: p = min {po + u x T,5},where u is the em-
ployee’s learning speed. This is a very simple model of learning
[39] [40]; more complex models can be introduced without alter-
ing much the nature of the time-line based model.

5.3.4. Employee experience model

An employee may have low proficiency in a skill but if they
work on a task requiring that skill long enough, they will become
more proficient as a result of experience. This is often referred to
as “on-the-job training”. It is assumed that each employee has “Ini-
tial Experience” for each skill area.

If an employee’s experience level on a task is r at the beginning
of a time unit and they work for a fraction of the time (b) on this
task, then at the end of the time unit their experience will be
TaskExp, = max(r + £ x b,5). Again, p is the employee’s learning
speed. The maximum value for experience is the same as that for
proficiency, 5.0.

To avoid confusion, it should be noted that the time-line
based model uses the term “experience” differently from other
existing models. For other models, the categories of experience
are very broad, fixed, and measured in years of work experience
on a certain scale (e.g. 1-7). This criterion is used to predict
schedules for large, long-term activities, so this broader range
is appropriate. In the time-line based model, experience catego-
ries are specific to tasks and are used to predict completion
dates for small, specific activities. Therefore, in this paper, it is
appropriate that we allow the experience level to rise during
the course of the project.

5.3.5. Employee availability model

Associated with each employee are two dates tpegin and teng,
which represent the months they first become and then cease to
be available for the project. They can only be assigned to a task
or training in a time unit t when Ti > tpegin and i < teng. This al-
lows the manager to move employees into and out of the project
based on external factors and addresses the problem of restricting
employee assignment, noted earlier in Section 4.2.

5.4. Task model

Atask is also represented as a numerical identifier (ID) and a set
of properties. These properties are described in the following
sections.

5.4.1. Employee effort estimation

The effort required to complete a task, measured in person-
months, must be known before employees can be assigned to the
task and the work can be scheduled. However, the experience level
of the employees assigned to a specific task will impact the effort
required. The new model allows those experience levels to grow
during the course of the tasks. Hence, models, which do not ac-
count for learning, can not be used without some modification. A
solution is to make the effort parameter a variable so that the effort
required can be adjusted based on the experience levels of employ-
ees. When employees are assigned to a task, their skills, profi-

ciency, and experience levels are known. We then re-estimate
the effort using the employees’ known properties. The impact of
the task assignment on the fitness function value will now be
somewhat different, but a GA with multiple individuals in multiple
populations will largely compensate for this effect.

5.4.2. Task importance model

Deadlines are often associated with specific tasks of the entire
project. In order to address deadline issues, the concept of “impor-
tance” of tasks is introduced by assigning three properties to each
task: Dsoft, Dpara, and P. The two deadlines are expressed in time
units, while the penalty P is expressed as a cost per unit time. There
is no penalty incurred if a task is finished before its soft deadline. If
it is finished after the soft deadline but before the hard deadline, a
penalty of P is paid for every time unit after the soft deadline. If the
task cannot be finished before the hard deadline, the penalty is oo,
which makes the schedule invalid, as any penalties will be
included in the project cost. If Do = Dparg = B (the final deadline
for the project) for all tasks, then there are no intermediate
(task-specific) deadlines.

Thus, if the task is finished on time unit M, the penalty will be:

0 M < Dsoft
penalty = P x (M - Dsoft) Dsoft <M< Dhard
oo M > Dhard

5.4.3. Skill list and ancestor tasks

These are the same as in the task-based model and, indeed, as in
most scheduling models based on activity networks. A task still has
a list of required skill IDs and a list of direct ancestor task IDs. All
ancestor tasks (also known as predecessor tasks) must be com-
pleted before the task can begin.

5.4.4. Maximum headcount

In reality, only a limited number of employees can work effec-
tively on any given task. As employees are added, the communica-
tion necessary to coordinate their mutual effort grows, usually
resulting in lower efficiency [41]. Therefore, there should be a limit
to the size of the team assigned to a task. In the new model, this
limit is set by the property MaxHead. If desired, the user can supply
a value that can be used in all later steps. If not, then the limit can
be calculated using any existing model.

For instance, in the COCOMO Model [9,10,21,22], the formula to
calculate the development time for a task is: TDEV=3 x
(PM)(©:33 + 02x(B-1.01)) where PM is the estimated effort in person-
months. Setting B=1 in the early design model, we obtain:
TDEV =3 x PM®328,

Therefore, the estimated average team size for a task should be
M~ 1PM®®”%, For the purpose of this study, we decided that dou-
bling this size (or 1 if PM is too small) can be used as the default
size limit, i.e. MaxHeadgemu: = max{1, round(PM°®"%)}.

More elaborate models of the effort required to perform a task
can be developed. However, replacing this algorithm with one
more appropriate to a particular type or category of tasks does
not change the fundamental approach.

5.5. Employee-task assignment scheme

The assignment scheme in the time-line based model can be
represented by a three-dimensional array. The first dimension is
time, divided into time steps, from 1 to an upper limit. For
example, if the time step size (also called the time unit) is 1
month and the upper limit is 36 months, the time dimension
will range from 1 to 36 in units of one month. The second
dimension represents the enumerated project tasks, followed
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by dedicated training tasks. The third dimension represents
employees. Towards the end of this study, this three-dimen-
sional array is populated with the values {0, 25, 50, 75, 100},
which represent the percentage of time the employee will work
on the task during each time unit. Fig. 1 illustrates the
representation.

5.6. Calculation of the fitness function

In order to retain the positive property (as required by GALib),
the fitness function is expressed as C - TotalCost, where C is a suf-
ficiently large constant. In the experiments reported here, the va-
lue C=10'" was used. If the value of C exceeded the length of
the mantissa of floating point type, this could result in some loss
of precision due to rounding. In practice this can be avoided by cal-
culating a problem-specific, smaller value of C using some heuris-
tics. In the work reported here, as a check, the implementation
directly computed the final cost. Our “optimal” solution in this
problem is the assignment with minimal cost. No significant prob-
lems were seen in the experimental results, as will be reported
later.

More serious is the general problem of excessive or invalid
assignment schemes (e.g., those containing unacceptable over-
time for some employee or those with tasks that cannot be rea-
sonably finished by the hard deadline). For such assignments,
the fitness is 0. Such restrictions, while making the model more
realistic, also serve to fragment the search space and could, at
some point in the search, potentially reduce the available gene
pool. In addition, because the dimensionality and granularity of
the representation have been increased, the gene pool will be
spread more thinly throughout the search space. The solution
is to somehow maintain the size of the populations and to in-
crease the number of generations (iterations) in the algorithm
beyond those used in the original task-based model. The ap-
proach selected in the current research was to include a set of
heuristics that convert obviously non-conforming assignments
to satisfy the constraints of the problem.

5.6.1. Heuristic

The objectives of these heuristics are to allow the populations
to search the space quickly without imposing an excessive pro-
cessing burden or introducing unrealistic constraints. Since the
fitness function is computed using the finer-grained time-line
representation, they must be applied during each time step be-
cause the properties of both tasks and employees evolve
overtime.

lime

////f///f/7

Timeunit M|

///ﬂ////////(’/\\wmnu s
Timeunit | \ Training 1
T T/\ Task N

Task 1
Employee 1 Employee K

Fig. 1. Assignment scheme in time-line based model.

Heuristic Explanation

1. Eliminate finished tasks Remove employees from any task
completed in the prior time step (for
the definition of finishing, see
achievement calculation in Section
5.6.2). In other words, set the
corresponding 3-D matrix entries to 0
Remove employees from tasks that
cannot begin the work during the next
time step

Remove employees from tasks that
require skills they do not have at the
time the task starts

Remove employees from any task on
which they become unavailable in the
next time step

Remove any contractors from any
training tasks in the next time period
Remove an employee from training
tasks if the goal of training is to
improve a specific skill for which the
employee already has proficiency in
excess of 4.5. Certainly, project
managers can choose a different
threshold

For each employee, create a list Q of
task assignments, sorted by effort
expended on each task. The total
workload WL of the employee for this
time step is the sum of the efforts in
the list with respect to the employee. If
WL exceeds the maximum value
defined for this employee, eliminate
the task assignment with the smallest
effort for this time step, continue to do
so until the new value of WL no longer
exceeds the maximum

Examine each task to determine if the
team size exceeds its value of
MaxHead. If MaxHead is exceeded,
eliminate the most “unfit” employees
from the task until the team size is
within the limit. The calculation of
“fitness” of an employee e is described
as TaskFit, used in the algorithm
shown in Section 5.6.2

2. Eliminate untimely
tasks

3. Eliminate unsuitable
assignments

4. Eliminate unavailable
employees

5. Eliminate contractors
from training tasks

6. Limit employee
training

7. Adjust workloads

8. Adjust overstaffed
tasks

After applying these heuristics, the majority of the restrictions
pertaining to the model should be satisfied. The assignments
may still be invalid in a more subtle way but this is the normal sit-
uation when using a GA-approach. The above heuristics are both
simple to implement and natural to the scheduling problem.

5.6.2. Achievement calculation

As discussed earlier, the cost drivers of Personnel Capability and
Personnel Experience must be calculated twice in the time-line
based model. These computations allow for improved performance
while the project and individual tasks are being performed. This is
done by calculating the “achievement” for each task after each
time unit and subtracting this value from the “remaining effort”
for the task, which is then used at the beginning of the next time
step. If the remaining effort becomes less than or equal to 0, then
the task is considered finished. At the start of each task, the
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remaining effort is initialized to be the estimated effort. For the
purpose of illustration, in the COCOMO II Model, the values of cost
drivers for a team-task pair range from 1 to 7, with higher values
indicating a linear increase in cost. The calculation of achievement
is shown as follows.

5.6.2.1. Algorithm for calculation of achievement in the time-line
based model. Given: A task with required skill list S and a list E of
employees assigned to it.

1. For each e € E:

TaskProf, = H 7Skl”§mfe’s

seS
where TaskProf, is the proficiency of employee e for this task,
SkillProf. sis the proficiency of employee e in using skill s. Notice
that TaskProf, is between 0.0 and 1.0.
2. For each e € E:

TaskProf, + %45
2

where TaskFit, is the overall fitness of employee e for this task,
TaskExp, is the experience of employee e for this task. Again, this
item is in the range 0.0-1.0.

3. The total fitness F of employee e for this task is:

> ecgTaskFit. x WorkLoad,
B > eceWorkLoad,

TaskFit, =

F

where WorkLoad, is the work load of employee e for this task
during the current time period.

4, Convert F to a cost driver value (1-7, 1 being the most fit) V by:
V =8 — round(F x 7 + 0.5)

if F=1.0 exactly, then set V to 1.
5. The achievement A is then:

Y ecgWorkLoad. /100
o Vx¢

A

The division by 100 is necessary because the workloads represent
percentages. A is in person-months. ¢ is the time unit parameter.

The algorithm for calculating the fitness function is shown in
Fig. 2.

6. Experiments

Our time-line based model was implemented in C++ with GALib
[31], an open-source and relatively new toolkit of Genetic Algo-
rithms, in both the Unix systems (Linux and Solaris) and Windows
XP environments. In the Windows XP environment, a Tcl/Tk exten-
sion package was written to provide a graphical user and database
interfaces to the model. Several experiments were conducted to
evaluate the correctness and performance of the model.

6.1. Choosing parameters
Population size, generation number, and mutation probability

not only influence the time required to perform the GA algorithm
but also affect the quality of the result [12,35].

Set all proficiencies of employees
back to their initial ones

I

Set all experiences of employees
back to their initial ones

v

| Timeunit:=1 |

All tasks v
finished?

N Fitness:=Payment
+Penalty

Return Fitness

Timeunit >
upper-bound?

Invalid, return 0

| Do heuristics |

Calculate labor
costs

Calculate achievements for tasks

Adjust remaining efforts

Some v
tasks finished?

Calculate penalties

ome task:
over hard
deallines?

[—N

Adjust skill proficiencies Invalid, return O

Adjust experience

v

Timeunit:=Timeunit+1

Fig. 2. Calculation flow of fitness function for the time-line-based model.
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First, the influences of population size and generation number
on the near-optimal solutions were examined in order to deter-
mine if the algorithms exhibited any unexpected behaviors, as well
as to determine the sizes of later, larger scale tests. Only for the
purpose of illustration, an initial set of experiments was performed
using small employee- and task-sets with three employees, three
tasks, and three skills. The time unit chosen was one month, with
an upper limit of 10 months. Table 1 shows the result obtained on
this experiment.

From the table, we learn that population-size = 1000 and gener-
ation-number = 1000 offered the best results for this small experi-
ment. Although a larger population size and generation number
can definitely result in better performance, overall it is still reason-
able to expect that those two parameters can be set to 1000 to get
positive results for later larger experiments.

The influence of mutation probability on the results of the GA
calculation must also be considered upon “fine-tuning” the algo-
rithm. For example, consider an experiment in the later section
with parameters of time-unit = week, upper time limit = 60 weeks,
population size = 200, generation number = 1000, and a variety of
mutation probabilities (see Table 2).

Table 2 suggests that under this scenario, small mutation prob-
abilities will produce better results than larger ones. Such a phe-
nomenon is not unique to this problem or to its implementation.
Because the purpose of mutation is to prevent the pre-maturing
of GAs, higher mutation probabilities may produce a greater per-
centage of “unfit” offspring, even when heuristics are used to im-
prove their likelihood of survival. Since the scheduling problem
has many restrictions, a high mutation rate would indeed produce
a high proportion of such “doomed” offspring. In the experiments
reported herein, mutation probabilities between 0.001 and 0.002
produced the best results. Accordingly, the default mutation prob-
ability was taken to be 0.001 for the remainder of the work. In fact,
most of the GA-related work also utilizes this value. And, as it can
be seen in most of the literature, the mutation rate is related to the
population size or the number of digits of a genome [34,35].

Constraints (such as tasks with tight, hard deadlines) serve to
restrict the search space, making it correspondingly more difficult
to develop a large enough population for adequate search space
exploration. Severe constraints can adversely influence the perfor-
mance of the Genetic Algorithm, as each iteration produces few
satisfying offspring. As a result, even after many generations, the
Genetic Algorithm may not be able to find a good solution or even
feasible solution for the simple reason that constraints limit its
ability to explore the search space. If constraints can be relaxed,
the successive generations of the population can have a larger
number of good genomes that span a larger portion of the search
space. In such cases, the Genetic Algorithm often produces a final
solution that can satisfy the original tight restrictions. For example,
in one experiment, when the upper time limit is set to 70, the algo-
rithm was unable to find any feasible solutions. However, with an

Table 1
Performance analysis with population size and generation number in a small example
Population size Generation number Best cost
500 100 22528
1000 100 21504
2000 100 18432
3000 100 23552
4000 100 20480
5000 100 22528
1000 500 14336
1000 1000 9216
1000 2000 9216
2000 500 12288
2000 1000 11264

Table 2

Mutation probability changes

Mutation probability Best cost
0.1 84118528
0.05 85620736
0.01 81460224
0.001 34738176
0.0001 37011456

upper bound of 80, a solution was found with total duration 60,
which was less than the earlier, more severe constraint of 70.

6.2. Experimental results

Several large and small experiments were conducted. One con-
sisted of 15 tasks for which 10 employees were available. The
employees, in turn, each possessed five skills to a greater or lesser
extent of proficiency. Each of the five skills was needed for at least
one task and many tasks required multiple skills. It was not imme-
diately obvious what the optimal assignments would be but the
algorithm, at the very least, found feasible and near-optimal solu-
tions. In particular, it can be seen that the Genetic Algorithm vastly
improved the fitness of the solution from the beginning to the end,
and the final solution did not violate the skill restrictions. The de-
tailed scenario and the results of this experiment are given as
follows.

6.2.1. Employees

Table 3 shows the properties of the employees available to the
project and Table 4 gives their proficiencies in the five skills neces-
sary to complete the project.

6.2.2. Tasks
Fig. 3 shows the dependencies among tasks and Table 5 de-
scribes the properties of the tasks.

Table 3
Employee properties

Employee Is Salary Incr Max Experience Speed Start End
ID contract hour
1 N 6000 100 150 4.8 1.5 1 30
2 N 5300 0 100 4.7 1.3 1 30
3 Y 4800 0 100 4.6 13 1 30
4 N 5000 0 75 4.7 0.9 1 30
5 N 5000 0 50 4.6 1.1 1 30
6 N 5800 100 125 4.8 14 1 30
7 N 5800 0 100 4.8 1.5 1 30
8 N 5000 0 100 4.5 1.0 1 30
9 Y 4600 0 75 4.3 1.2 1 30
10 N 5300 0 50 4.6 13 1 30
Table 4
Employee proficiencies
Employee ID Proficiency
1 4.5 5 0 5 4.8
2 0 0 3.5 0 4.8
3 43 4 3.5 0 4.8
4 0 4.7 0 0 0
5 4.5 4 3.8 0 5
6 0 4.5 4.3 4 0
7 4.5 4.8 5 0 0
8 0 0 0 4.5 4.6
9 0 0 3.9 4.8 0
10 4.7 4 0 3 4
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Table 5
Task descriptions

Task ID Effort Soft deadline Hard deadline Penalty Max Head Skills
1 0.25 0 4 1000 2 13
2 0.5 8 12 1000 2 235
3 0.8 12 15 2000 3 1245
4 0.25 0 0 0 3 12
5 0.6 0 0 0 3 13
6 0.5 0 0 0 3 34
7 03 0 0 0 2 245
8 0.4 24 32 2000 2 23
9 0.25 0 0 0 2 24
10 0.5 0 0 0 2 45
11 0.5 0 0 0 2 135
12 0.25 0 0 0 2 24
13 0.8 0 0 0 3 234
14 0.5 40 52 3000 2 1235
15 1 52 60 5000 3 2345

6.2.3. Results of the experiment

In this experiment, the time unit was given to be one week, with
an upper limit of 60 weeks. A mutation probability of 0.001, a pop-
ulation size of 1000, and a maximum of 1000 generations were
used to guide the genetic algorithm. The final (lowest) cost was
25940992. The evolution process is shown in Fig. 4.

6.2.4. More experiments via Experts’ efforts

In order to evaluate the new model, we decided to compare GA
performance against that of humans. A hypothetical smart home
project (Appendix A) was designed for this purpose. We chose this
project design because it presented real-life meanings to the pro-
ject parameters, which would otherwise be too abstract for an ex-
pert to do a good job. There are 25 tasks, 12 kinds of skills, and 15
employees available for the project. We recruited two senior soft-
ware project managers (PM1 and PM2) to assign the employees to
tasks. The results we obtained from the managers are shown in
Figs. 5 and 6, respectively. Before recently retiring, PM1 had 25
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50000000 \\\
40000000
30000000
20000000
10000000
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Fig. 4. Evolution process.

years of experience in software development and over 15 years
of project planning and management experience in large-scale
telephony systems. PM2 worked on software development projects
for 30 years and managed projects for about 20 of those years. He
managed over 30 projects ranging in duration from three months
to two years with the majority at 18 months. Most of the projects
were telecommunications systems; others were real-time, embed-
ded systems such as vehicle location systems.

The experts shared the assumptions they made when arranging
schedules. For example, PM1 was less concerned than PM2 about
costs when she assigned employees to tasks. However, she paid
more attention to the skill matching of the employees. In the
end, both experts attempted to arrange the shortest schedules.

Based on their work, we obtained costs of 546353 and 559920,
respectively. We ran our model by fixing the mutation probability
to 0.001 and the population size to 1000 adjusting the number of
generations from 1000 to 2000. The average time the experts spent
developing the assignments was 3.0 h excluding preparation time
(i.e., the time to understand the project). In contrast, the average
run time for our program was only 33 min. In other words, the time
it took to generate an assignment by running the program was
much faster than the time to generate an assignment by a hu-
man-being including the experts. Moreover, the minimum cost of
these experiments was 385818. Obviously, the GA outperformed
both experts. However, the average cost of all of the experiments
we ran was 527104, which was slightly below the experts’ results.
Two reasons can be cited for the discrepancies (1) the search space
of our model included the two schedules generated by the experts
and (2) only one expert was concerned with the cost consideration.
Hence, the costs of the two schedules were not minimal values.
Based on these results, the minimum cost of the experiments could
be treated as a lower bound of project cost and the average cost of
the experiments could be a useful reference to managers.

In conclusion, the schedules created by the experts were al-
ready acceptable but the results from the GA program outper-
formed the experts’ assignments. Therefore, we believe that in
order to arrange an itinerary with reduced cost, the schedules gen-
erated by our model can be an auxiliary schedule for managers
who may or may not have experience in project management. In
order to achieve this, the managers can compare the differences
between the two schedules (model and self generated), and make
some adjustments to the final schedules. Since our model also con-
siders the skills and on-the-job training of employees, the schedule
can also help managers inspect the shortage of their assignments,
while rearranging those that are already believed to be suitable.

7. Comparisons and discussions

A number of researchers suggested certain kinds of problems
where GAs work better than other heuristic methods and provided
the criteria to compare different problems and algorithms, such as
[32,33]. Mostly, the comparisons focused on GA and hill-climbing.
Here, we compare the performance between GA and hill-climbing
in this project management environment.

The hill-climbing algorithm that we used works as follows: A
population of initial solutions is chosen where the best one is
determined as the starting point. This foremost solution is mutated
at a randomly chosen single locus and the fitness is evaluated. If
the mutation leads to a higher fitness, the new solution replaces
the old one. The procedure continues until the optimum is found.

Usually, hill-climbing algorithms are much faster than GA to
reach optima. However, the landscape in this problem has many lo-
cal optima which render the achievement of a global optimum a dif-
ficult task for the hill-climbing algorithm. Compared to the same
case discussed in the previous section, the mean cost computed by
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Fig. 5. Assignment of expert 1.

hill-climbing was 34622840 with (initial populations = 1000) while
the mean using the GA is 27635360, which outperforms the best fit-
ness achieved by hill-climbing as shown in Table 6.

Using GA to analyze the computational procedure, we can see
from Fig. 3 that GA is not efficient in the later stage of computation
which, in essence, means it converges very slowly. With GA’s ability
for global optimization and hill-climbing’s ability to locally opti-
mize, a hybrid algorithm combining the two may be the ideal choice.

The table below gives the results from the experiment with two
cases. Table 7 shows the result of GA (mutation probability = 0.001,
generation number = 1000, population size = 1000) and GA (gener-
ation number = 500) with hill-climbing in a small experiment.
Table 8 shows the result of GA and GA with hill-climbing in a
relatively larger project scheduling problem.

In our model of software project scheduling, on relatively smaller
problems, hill-climbing is much better than GA both in time and fit-
ness evaluation. On the other hand, GA will outperform hill-climbing
when the problems become more complicated; GA with hill-climb-
ing does not help much in optimization of larger problems. Certainly,
we are aware of many real-world considerations that may further
complicate the environment. For example, career growth is refined
for each employee so that skill match takes a different spin. We con-
sider those “expectations” as more refined constraints that will only
enlarge the search space and extend the search time.

8. Conclusions and future work

As explained earlier, traditional and widely accepted project
management techniques fail to cope effectively with the evolution-
ary and dynamic nature of modern software projects. In addition,

these techniques do not deal with large-scale optimization prob-
lems. This paper describes a scheduling model that includes some
of the nuances that arise in planning actual projects and a genetic
algorithm to find optimal and near-optimal solutions. Compared to
the efforts by project management experts, our model using GA ap-
peared to be a viable tool to help guide project managers in their
daily routines.

Potential topics for future work include the following improve-
ments to the model:

1. Better system dynamics integrated with the modeling of pro-
gress of tasks where better training and experience models are in-
cluded. Can we better model the impact of the synergies between
multiple skills of a single individual when they are simultaneously
applied to a task, as well as the combined effect of the skills of mul-
tiple employees when applied to a task? Moreover, can we explore
the impact of team size on these topics?

2. Better representation of skills, employees, and tasks. Can we
cluster skills into classes of similar levels of difficulty? Can we intro-
duce different learning rates based on the difficulty, and allow for
learning synergies within the classes? Employees can be divided into
categories with preferred skills and predefined groupings for train-
ing associated with each category. By carefully planning training ses-
sions and task assignments associated with each category, we can
accommodate career advancement along a pre-defined sequence
of tasks. We can also define categories of tasks and assign levels of
criticality of skills to tasks, thereby effectively creating a default list
of skills and minimum proficiency levels required. While not a fun-
damental change to the representation, it would be highly desirable
to simplify the task of data entry, which can be quite formidable for
the project manager.
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Table 6
Comparison between GA and hill-climbing 4. Explore more search heuristics, such as Tabu search and sim-
ulated annealing, and compare their performances in software pro-
Best Mean Worst . .
ject scheduling.
Steady GA 25424896 27635360 29941800 5. Consider building a user interface to allow for more convenient
Hill-climbing 29883000 34622840 41868400 . .
feedback from the manager as the project evolves, and to display the
status of an on-going project in a manner more suitable to the model.
In other words, on top of the GA engine (GALib in our implementa-
Table 7 tion), we can implement a suitable interface for project manage-

Comparison between GA and GA with HC in a relative small problem (3 tasks, 3
employees)

Best Mean Worst
Steady GA 8192 11298 15360
Steady GA (500 generations) with HC 5286 6983 10024

Table 8
Comparison between GA and GA with HC in a relative big problem (15 tasks, 10
employees)

Best Mean Worst
Steady GA 25424896 27635360 29941800
Steady GA (500 generations) with HC 26761000 28929233 33171600

3. Flow of control options that allow the project manager to eas-
ily explore alternative project plans needs to be examined. Some
selected tasks can be immediately executable, even if their prede-
cessor tasks are not complete; some selected tasks may be required
to be re-done to recover from failure of a specific activity, such as a
design review, or a test. The concept of probability can be added to
these two options.

ment. Of course this will become a very extensive project requiring
knowledge in other domains such as HCI usability and design.
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Appendix 1. Smart home project
A.1. Purpose and overview of the project
The purpose of Smart Home Project is to develop a home where

most devices are controlled by computers so that it can help the dis-
abled or elderly people live independently without the need for an
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assistant to be nearby. That is, one of the smart home’s primary
objectives for the elderly is to enable them to retain their status as
an independent homeowner for as long as possible before making
the transition into the health care system (e.g., nursing homes). In-
side the home, there are sensors to detect the activities of the home-
owners and based on their specific actions, or lack thereof, the smart
home will react accordingly to deliver necessary automated assis-
tances, including, but is not limited to: medicine application, cook-
ing and general proactive and reactive safety measures.

One exemplary feature of the smart home is its preset automa-
tion. Users and researchers alike can define specific context infor-
mation (defined events, environmental fluctuations, etc.) where
the smart home will be triggered into action. One principal exam-
ple of this is the house’s lighting. Depending on the existing
amount of natural and synthetic light in any given room, as well
as the preset preference of user-defined brightness, the home will
adjust window coverings and synthetic light levels to accommo-
date to the specifications. As a matter of fact, this feature has al-
ready been designed and implemented in the Smart Home Lab
and at the Department of Computer Science, lowa State University.
Scenarios similar to this can be considered in many other devices
within the smart home.

A.2. Features of smart home framework

We focus the features of the smart home framework on three de-
vices (lighting system, motion detector, and a RFID-based heart rate
monitor) and one set of actors (researchers). A key point to note is
that most of these proposed features are generic and can be easily
ported to devices that will be included in future iterations. All of
the control software will accept commands from devices such as cell
phones, PCs, controllers, etc. This will ensure a greater ease of use for
the user in any scenario. Inversely, these devices will also have the
capability to receive commands from the control software.

A.2.1. Features of application

The following is an abbreviated list of smart home features to
illustrate the expansive breadth of control capability. The general
features cover a wide spectrum such as (1) basic control of devices;
(2) features on lighting, doors, administration, medication, floors,
etc; (3) safety; (4) security and (5) reliability.

The following is the Task Precedence Graph (TPG) extracted
from the smart home requirements and its explanation.

Skills:

1. Operating system
2. Programming
3. Network-security

. Network-wireless (802.11)

. Network-TCP/IP

. Math-probability

. Math-optimization

. Database

9. Human-computer interaction
10. Language(English)

11. Engineering Basic

12. Network-H.323 (IP Telephony)

0NN O U A

Our assumption for the developers’ skill levels is that, basically,
each skill can be treated as an independent one (that is, there is no
dependency between any two skills.) However, we do consider the
dependency between skill 4 and skill 5 as it makes sense.

Tasks:

T1: Design and set up the system server
Skill 1, 2, 5, 8 person months, 3 MaxHead

T2: Set up the security system (Lock system/network system)
Skill 2, 3, 5, 5 person months, 2 MaxHead

T23: Connect some of the devices to the motion sensors so that
the motion of the occupant can be one of the inputs
Skill 1, 5, 11, 5 person months, 2 MaxHead

T24: Connect some of the devices to the sensors so that whatever
the sensors get can be the inputs
Skill 1, 5, 11, 1.5 person months, 1 MaxHead

T25: Integrate all the tasks and embed the manual inside the
system
Skill 1, 2, 5, 10, 4 person months, 2 MaxHead
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