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Abstract A new hybrid clustering algorithm based on a
three-layer feed forward neural network (FFNN), a distri-
bution density function, and a cluster validity index, is
presented in this paper. In this algorithm, both feature
weighting and sample weighting are considered, and an
optimal cluster number is automatically determined by the
cluster validity index. Feature weights are learnt via FFNN
based on the gradient descent technique, and sample
weights are computed by using the distribution density
function of a sample. Feature weighting and sample
weighting highlight the importance of sensitive features
and representative samples, and simultaneously weaken the
interference of insensitive features and vague samples. The
presented algorithm is described and applied to the incipient
fault diagnosis of locomotive roller bearings. The diagnosis
result demonstrates the superior effectiveness and practicabil-
ity of the algorithm, and shows that it is a promising approach
to the fault diagnosis of rotating machinery.
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1 Introduction

Rotating machinery is critical equipment in key industries,
such as power plants, petrochemical plants, etc. Faults in
rotating machinery can cause both personal casualties and
economical loss [1]. Therefore, the fault diagnosis of
rotating machinery has become a vigorous area of study
and has attracted more and more attention during the past
decade. The fault diagnosis of rotating machinery consists
of three key steps: data acquisition, feature extraction, and
fault detection and identification [2—4]. It is a procedure of
mapping the information obtained in the measurement
space and/or features in the feature space to machine faults
in the fault space. Therefore, it is essentially a problem of
pattern recognition and pattern classification [5, 6]. With
the development of artificial intelligence, such as artificial
neural networks (ANNSs), fuzzy sets theory, and expert
systems, etc., many fault diagnosis approaches have
emerged as new techniques for fault diagnosis systems
[7-9].

Fuzzy clustering, owing to its superiority in dealing with
uncertainty and independence from supervisors, has been
widely studied and applied to fault diagnosis [10-12].
According to the principle that “similar objects are within
the same cluster and dissimilar objects are in different
clusters,” a fuzzy clustering algorithm employs a fuzzy
mathematics method to partition a data set into several
homogenous groups or clusters. During clustering, there is
no teacher to provide guidance, hence, it is also called
unsupervised classification. The main characteristic of the
fuzzy clustering algorithm is that each sample is subject to
one cluster with a certain grade of membership [13, 14].

Among various clustering algorithms, the fuzzy c-means
(FCM) algorithm [15, 16] is one of the most well-known
and widely used algorithms [17]. However, the FCM
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algorithm suffers from the following shortcomings: (1) it
supposes that all features have uniform contributions to
clustering, and does not take account of their different
importance degrees; (2) it always treats each sample
equally, and neglects their different influences to clustering;
(3) it requires users to predefine the number of clusters
beforehand, but it is not always possible to know the
number in advance. Therefore, the FCM algorithm fre-
quently results in inexact clustering results.

There are several improved clustering algorithms
reported in the recent literature, in which the importance
of the features in clustering is considered. Chan et al. [18]
developed an attribute-weighting clustering algorithm,
which is achieved by the development of a new procedure
to generate the weight for each attribute. Wang et al. [19]
introduced a weighted FCM algorithm based on weighted
Euclidean distance. Frigui and Nasraoui [20] presented a
new approach to perform clustering and feature weighting
simultaneously, and used it to segment color images. To
solve the problem of predefining the number of clusters in
the FCM algorithm beforehand, Sun et al. [21] developed a
new FCM-based clustering algorithm and a new index for
validating clustering results. In addition, many cluster
validity indexes have been developed, by which an optimal
cluster number can be automatically found [22-27].

In all of the clustering algorithms mentioned above, no
researcher simultaneously solved the above three problems
of the FCM algorithm. Thus, we make much improvement
and propose a new hybrid clustering algorithm to overcome
the three shortcomings. The proposed algorithm is devel-
oped by incorporating feature weighting, sample weighting,
and a cluster validity index into the FCM algorithm, and is,
finally, applied to the incipient fault diagnosis of rotating
machinery. The optimal cluster number is automatically
determined by using a cluster validity index. Feature
weights are learnt via a three-layer feed forward neural
network (FFNN) under the unsupervised training mode,
and are assigned to the corresponding features to indicate
their different sensitivities. Sample weights are computed
by using a distribution density function of a sample and are
then assigned to the relevant samples to highlight the
effects of the representative samples.

In comparison with the existing algorithms [18-21], the
merits of the proposed algorithm are not only to automat-
ically find the optimal cluster number, but also to
simultaneously take account of feature weighting and
sample weighting. Thus, it has better clustering perfor-
mance than the others.

This paper is organized as follows. Section 2 describes
the computation of the feature weights and the sample
weights, and presents the definition of the cluster validity
index. Section 3 presents the hybrid clustering algorithm.
The proposed algorithm is developed by combining the

FCM algorithm with feature weighting, sample weighting,
and the cluster validity index. In Section 4, the proposed
algorithm is applied to the incipient fault diagnosis of the
locomotive roller bearings and compared with the FCM
algorithm in clustering performance. Our conclusions are
drawn in Section 5.

2 Computing weights and choosing a cluster validity
index

2.1 Motivation

Figure 1 shows a simple example that illustrates the
necessity of feature weighting and sample weighting.
Figure la describes a data set containing three clusters in
a three-dimensional space represented by features fl, {2,
and f3, respectively. Each cluster consists of 12 samples
and they are situated on two concentric spherical surfaces,
respectively. The center of the concentric spherical surfaces
is that of the corresponding cluster. Figure 1b—d show the
projections of the data set on different planes, respectively.

From Fig. 1a, it is easily seen that not all samples in each
cluster have the same importance to clustering. The six
samples situated on the inner spherical surface are more
important to clustering than those situated on the outer one,
i.e., the former are more representative to clustering. By
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Fig. la—d A data set with three clusters and its projections on
different planes. a A data set distributed in a three-dimensional space.
b Projection of the data set on the fl—{2 plane. ¢ Projection of the data
set on the f1-f3 plane. d Projection of the data set on the f2—f3 plane
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comparing Fig. 1b-d, one can see that each feature has
different importances to clustering. Obviously, fl is
superior to the others to discriminate these three clusters,
f2 is inferior, and f3 is the worst. Thus, to improve
clustering performance, both feature weighting and sample
weighting are absolutely necessary.

2.2 Learning feature weights based on a three-layer FFNN

Feature weighting can be regarded as a generalization of
feature selection, and it is a number within [0, 1] that is
assigned to a feature for indicating the sensitivity of this
feature. In the Euclidean space, feature weighting is to
extend the axes corresponding to the sensitive features and
to shrink the axes corresponding to the features unrelated to
clustering. Consequently, it enables a clustering algorithm to
classify nonspherical clusters as well as hyperspherical ones.

The feature weights in this paper are learnt via a three-
layer FFNN, as shown in Fig. 2. They are learnt based on
the gradient descent technique through minimizing the
following objective function with respect to the feature
weight vector wf [28, 29]:

) =2/ = DI Y [0 (1= 0)") + 01 (1= )] /2
’ (1)

where wf=(wfi,..., Wf,,,..., wfy,) denotes the feature weight
vector. wf,, is the mth feature weight for m=1,..., M and M is
the number of features of each sample. N is the number of
samples of a data set X = {X1,..., X;,..., Xy }.X;=(X1,...,
Xjms---» Xjaz) 18 the jth sample for j=1,..., N, and x;,, is its mth
feature. pijl) represents the similarity measure using the
standard Euclidean distance di(jl). pEij ) denotes the similar-
ity measure using the weighted Euclidean distance di?”f ),

The weighted Euclidean distance between the ith sample
x; and the jth sample x; is defined as:

v 1/2
0 W 2
dl(] /) = d( /) (Xia Xj) = [Z me (xim - xjm) ‘| (2)
m=1
where wf,, indicates the sensitivity of the mth feature. When
all feature weights are equal to 1, the weighted Euclidean
distance d,‘(ij ) defined by Eq. 2 becomes the standard
Euclidean distance d; ),
Then, pl(ij ) is defined as:

o =1/ (1+5-ay"), (3)
where [ is a positive parameter determined by solving the
following equation:

2 () 2 1
N(N—l); Y N(N-1) ZM 1+5.d;1>

(4)
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The motivation of minimizing the objective function
defined by Eq. 1 to learn the feature weights can be
described as follows. The objective function will attain its
minimum when all similarity measures are close to either 0
or 1. A good partition should have the following property:
the samples within one cluster are close to the center and
different centers are more separate, which implies that the
samples within one cluster are more similar pfjwf R

5 — 0), s0

ij
that the value of the objective function is low. Therefore,
we hope that, by adjusting the feature weights wf, the
original similar objects (pl(/l)
<p§j\w‘ ) 1),
(pﬁ,” < 0.5) are more separate (pl(./wf ) 0) [29].

Figure 2 shows the FFNN architecture consisting of
three layers with 2M:M:2 nodes for an input, a hidden, and
an output layer, respectively. The 2M nodes in the input
layer correspond to the 2M features of any two samples
from the data set. The input layer just transfers all inputs to
the hidden layer and performs no calculation. The input of
the mth node in the hidden layer is the sum of the weighted
outputs of the mth and the (m+M)th input nodes via
connection weights +1 and —1, respectively. The input of
the node computing plg»w'ﬂ in the output layer is the sum of
the weighted outputs of each hidden node with the
corresponding weight wf,,, whereas that computing p§j1> is
the sum of the weighted outputs of all of the hidden nodes
with weights +1. During training, any two samples as a pair
are fed to the FFNN. A data set consisting of N samples has
N(N-1)/2 different sample pairs [28].

Let in') and out!) denote the input and the output of the
mth node(m=1,..., M) in the Ilth layer (I=1, 2, 3),
respectively. We assume that the pairs fed to the FFNN

and dissimilar samples are more separate (p

> 0.5) become more similar
and the original dissimilar objects
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Fig. 2 A three-layer feed forward neural network (FFNN) used to
learn feature weights
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are (x;, X;); then, the inputs, the activation functions, and the
outputs in each layer are as shown in Table 1.

Substituting the outputs pgjwf ) and pl(jl) of the FFNN into
Eq. 1, we obtain the value of the objective function E(wf).
The feature weights are learnt based on the gradient descent
technique through minimizing the objective function, where
the weight change Awf,, can be expressed as:

OE (wf) OE  dout? oin”
Ame = —-n = -0 : ' ’ (5)
OWfon 5‘0ut§3) 8in§3) OWf
OE 2 | )
= -y —(1—=2o0uty” ), (6)
60ut§3) N(N-1) ; 2 < ? )
(r“)out?) B B 7)
- (3) 1/2\ 2 1/2
Oin 2(1 +06- (in<13>> > . (in(13>)
.3
gm} = outr(nz), (8)
W

where 7 is the learning rate whose optimal value for each
epoch is acquired by using the golden section search
method. In each training epoch of the FFNN, the golden
section search method is utilized to find the learning rate
that minimizes the objection function E(wf) in the given
range of the learning rate. The learning rate corresponding
to the minimum of the objection function is chosen as the
learning rate of the current training epoch.

For all sample pairs of a data set, the FFNN performs
forward calculations to obtain the value of the objective
function. Then, the feature weight wf,, is iteratively updated
with wf,, +Awf,, for each m until the terminating conditions
are satisfied, where Awf,, is computed in accordance with
Egs. 5-8.

Therefore, this FFNN is different from supervised
learning neural networks based on input—output pairs and
it is trained under the unsupervised mode. The categories of

the training samples are unknown in advance. Therefore,
the ANN outputs are not the categories of the input sam-
ples, but, instead, are the similarity measures pEjl) and PE,W )
between the input samples. The training purpose is to
minimize the objective function E(wf) by adjusting the
feature weights. The training process includes the forward
pass and the backward pass. During the forward pass, the
node outputs advance until the output layer. The backward
pass uses the gradient descent method to update the feature
weights wf,,.

2.3 Computing sample weights based on a distribution
density function

Generally, the more surrounding of other samples that one
sample is, then the larger the distribution density of that
sample. Then, it is closer to a cluster center and more
representative. Therefore, we employ a distribution density
function of a sample to compute the sample weights.

The distribution density function y; of the ith sample
(i=1,..., N) is defined as:

yi= i (1/01[5??1’)) 9)

J=1, i
subject to:

dl(ij) S r,

(10)
where 7 is the boundary of the distribution density function.
This boundary is equal to the weighted Euclidean distance
where the probability distribution function of d,;wf ) attains
its maximum value.

Normalizing y; according to Eq. 11, we derive the
sample weight vector wp=(wpi,..., wWp;,..., wpy). Its
component wp; is the ith sample weight for i=1,..., N and
indicates the typicality of the ith sample:

N
Wpi Zyi/ZJ/i~ (11)

Table 1 Inputs, activation functions, and outputs of the feed forward neural network (FFNN)

Layer Input Activation function Output
= infy) = Xim, infnlJ)rM Xjm | out=in out\) = in()), OzutinllM = in)(nlJ)rM
=2 in@ = (4+1) - out) 4 (=1) - out,(nJ)rM out=in* out?) = (mfnz))
— 2 (3) _ - 2 _ 1 Wi 1
=3 iny’ = Z (wfm -out,(n)>, out = 53w outf) _ pl(_j o) _ o
8- (i) )
inl) = Z out?
2 m
m G _ 0 _ 1
outy’ = p;’ =

n+8- (inf))l/z]

@ Springer



972

Int J Adv Manuf Technol (2008) 35:968-977

2.4 Choosing a cluster validity index

Because the clustering results generally depend on the
choice of the cluster number, it is necessary to validate each
of the clusters once they are found. This validation is
carried out by a cluster validity index, which is to determine
an optimal cluster number that can validate the correct and
natural description of the data structure. Some numerical
examples including several artificial data sets and some
UCT databases have been used to compare PC [30], PE
[31], FS [32], MPC [33], XB [34], FHV [35], K [36],
PCAES [25], OS [26], and PBMF [27] indexes. The
comparison results show that the PBMF index is superior
to the others and, therefore, it is chosen as the cluster
validity index in this paper. It is defined as [27]:
1 E 2

PBMF(K) = [E 7 DK} (12)
where K is the number of clusters, J, is a compactness
measure of K clusters, Dy is a separation measure of K
clusters, and E| is the value of J; when K=1.

The definition of PBMF indicates that larger values of
PBMF correspond to good clusters, and the number of
clusters that maximizes PBMF is taken as the optimal
number of clusters. More information about PBMF can be
found in [27].

3 The proposed hybrid clustering algorithm

The proposed hybrid clustering algorithm is created by
combining the FCM algorithm with feature weighting,
sample weighting, and the cluster validity index mentioned
in the preceding section. It consists of an inner iterative
loop and an outer iterative loop. The inner iterative loop,
similar to the FCM algorithm, performs clustering by
minimizing the following objective function. The outer
iterative loop computes the validity index of clusters
produced by the inner iterative loop. The flow chart of the
proposed algorithm is shown in Fig. 3.
The objective function J of the hybrid clustering
algorithm is expressed as:
( Wf )) , ( 13)

K N
J(U, Z, wp, wi; X) = > wpi(u

k=1 i=1
subject to:

K

Youx=1 0<uz <1, (14)
k=1

where U=[u;] is the fuzzy partition matrix for k=1,..., K
and i=1,..., N, and u;, is the membership degree of the ith
sample to the kth cluster. A is the fuzzy clustering exponent.

@ Springer
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Fig. 3 Flow chart of the proposed hybrid clustering algorithm

d;,:‘j ) is the weighted Euclidean distance between the ith

sample and the kth cluster center, and is defined as:

M

12
dl(/?j) = d( /)(Xl, Zk) [Z me(xim - ZkM)2‘| ) (15)

m=1

where Z={Z, -+ ,zg, -+, --zx} is the set of cluster
centers, Z;=(Zip-.-» Zim»---» Ziazr) 1S the center of the kth cluster
and z;,, is its mth component.

Substituting wf introduced in Section 2.2 and wp
computed in Section 2.3 into Eq. 13, constructing and
solving the Lagrange equation, then we derive the
computational formulae of z; and u;; as:

Z, = pri(uik)ixi/z WPi(uik)A (16)
i=1 i=1



Int J Adv Manuf Technol (2008) 35:968-977

973

and
£ ~ 1 2/0=1)

we =1/ (dg” [di") (17)
a=1

where d") is the weighted Euclidean distance between the

ith sample for i=1,..., N and the ath cluster center for
a=1,..., K.
The procedural steps are as follows:

1. Learn the feature weights via the three-layer FFNN
with the gradient descent technique, and compute the
sample weights based on the distribution density
function, respectively.

2. Initialize the parameters related to the hybrid clustering
algorithm: the initial number of clusters, the maximum
number of clusters K,,,,x, the fuzzy clustering exponent
A, and a threshold value €.

3. Given the number of clusters K and the fuzzy clustering
exponent A, initialize fuzzy partition matrix [u;;].

4. Update the fuzzy cluster centers z, and the fuzzy
partition matrix [u;] using Eqgs. 16 and 17.

5. If the difference AJ between two adjacent computed
values of the objective function J is larger than the
given threshold &, then go to Step 4; otherwise, go to
Step 6.

6. Compute the PBMF index of clusters derived in Step 4.

7. If K<Kpax then K=K+1 and go to Step 3; otherwise,
go to Step 8.

8. Find the maximum of PBMF and report the value of K
that maximizes PBMF as the optimal number of
clusters. The corresponding cluster center set Z and
fuzzy partition matrix U are just the clustering results.

The initial number of clusters is 2. According to a rule of
thumb that many investigators adopt, the value of K.«
should not exceed v/N(N is the number of samples) [37].
The choice of the fuzzy clustering exponent A is similar to
the FCM algorithm, i.e., the optimal range of the fuzzy
clustering exponent A is in [1.5, 2.5], and A is generally set
to the middle value of 2 [38].

4 Application to fault diagnosis
4.1 Case study description

Roller bearings, as important components, are widely used
in rotating machinery. Roller bearing faults are one of the
foremost causes of failures in rotating machinery [33].
Among all types of the locomotive roller bearing faults,
including outer race fault, inner race fault, roller fault, and
cage fault, etc., the outer race fault occurs most frequently.
The incipient faults occurring in the outer races of the
locomotive roller bearings generally behave as slight

rubbing. If they are not detected as early as possible, they
will usually evolve into serious flaking faults, which may
lead to fatal breakdowns of the locomotives.

4.2 Data collection

In the fault diagnosis systems of rotating machinery, the
most successful method is based on vibration analysis [4,
39, 40]. Here, accelerometers with a bandwidth up to
5,000 Hz are mounted on the bearing housings to acquire
the vibration signals from the bearings. The Advanced Data
Acquisition and Analysis System by Sony EX are used to
collect the data with a sampling frequency of 12.8 KHz.
A bearing data set containing three subsets is obtained
from the locomotive roller bearings under three different
conditions: (a) normal conditions (NC); (b) with slight rub
faults occurring in the outer races (SRF); and (c¢) with
serious flaking faults occurring in the outer races (SFF).
Each data subset corresponds to one of the three conditions
and it consists of 50 samples. Each sample contains 8,192
sampling points, i.e., the data length of a sample is 8,192.

4.3 Selection and extraction of features

The diagnosis task of machinery is actually a problem of
pattern classification and pattern recognition [5, 6], of
which, the crucial step is feature selection and extraction.
Large kinds of feature parameters have been defined in the
pattern recognition field. Here, six of them, which are
usually used for the fault diagnosis of roller bearings in the
time domain, are shown as follows:

Root mean square (RMS):

where s, (#=1,..., T) is the tth sampling point of sample
S. T is the number of sampling points.
Peak value (PV):

PV = max|s;|. (19)
Kurtosis value (KV):

a 4

> (s —%)

=1

(21)
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and o is the standard deviation of sample S, defined as:

1 & 2
o= ﬁ;(st—s). (22)
Crest factor (CF):
cF = Mmaxls| (23)
T
72 (1)’
=1
Impulse factor (IF):
max|s;|
T 2 s
=1
Clearance factor (CLF):
cLF = maxs] (25)

b5

These six features derive from the amplitude the
probability density function of the bearing vibration signals,
and they can be calculated and compared with those of
normal bearings [2]. It was shown [41] that the peak value
and root mean square reflect the vibration amplitude and
energy, and the kurtosis value, crest factor, impulse factor,
and clearance factor characterize the impact existing in the
roller bearings. The kurtosis value and crest factor are
robust to varying operating conditions of the bearings, and
are good indicators of incipient faults. The impulse and
clearance factors are also good indicators of spikiness of the
sharp impulses generated by the contact of a defect with the
bearing mating surfaces [2, 42]. Faults that typically occur
in locomotive roller bearings are usually caused by local
defects in the outer race. Such defects generate a series of
impact vibrations and cause the vibration amplitude to
increase. Therefore, we choose these six features to
represent the bearing conditions. But the importance of
the six features is different in the fault diagnosis of the
bearings. Thus, we assign feature weights to the
corresponding features to indicate their different sensitivi-
ties in the fault diagnosis of the bearings.

4.4 Diagnosis result
Figure 4 presents the variation of the PBMF index with the
number of clusters in the range [2, 12] when the proposed

algorithm is performed for clustering on the bearing data
set. In Fig. 4, it is evident that the maximum exists at K=3,
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Fig. 4 Variation of the PBMF index with the number of clusters

which indicates that the bearing data set consists of three
clusters. It is coincident with the fact.

For visualization, we implement the principal component
analysis (PCA) method on the clustering results obtained by
the proposed algorithm for the bearing data set. The plot of
the first two principal components (PCs) of the results is
shown in Fig. 5. The two PCs account for more than 97%
of the variability of the features. Similarly, Fig. 6 shows the
clustering results of the FCM algorithm with the cluster
number predefined to 3. In Fig. 6, some samples (circled by
an “0”) are misclassified by the FCM algorithm, but in
Fig. 5, using the proposed algorithm, all samples are
correctly classified to the corresponding clusters.

Table 2 gives the values of the objective function, the
error rates, and the CPU processing times of the proposed
algorithm and the FCM algorithm. Table 2 shows that the
error rates of the FCM algorithm and the proposed
algorithm are 10% and 0%, respectively. The values of
the objective function of the two methods are 16 and 1.2,
respectively. The CPU times taken to carry out the FCM
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Fig. 5 Scatter plot of the principal components (PCs) for clustering
results obtained by the hybrid clustering algorithm
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Fig. 6 Scatter plot of the PCs for clustering results obtained by the
fuzzy c-means (FCM) algorithm

and the proposed algorithms are 0.047 and 2.765 s,
respectively.

Comparing the proposed algorithm with the FCM
algorithm, we found that the former automatically deter-
mines the number of clusters, and, in addition, its clustering
accurate rate (100%) obviously outperforms the latter
(90%). Although the FCM algorithm diagnoses the serious
flaking faults well, it suffers on performance when it
diagnoses the incipient slight rub faults. Fifteen samples of
the incipient slight rub faults and the normal conditions are
misclassified by the FCM algorithm. However, the hybrid
clustering algorithm proposed in this paper can diagnose
not only the serious flaking faults, but also the incipient
slight rub faults perfectly. The reasons for this are as
follows. Firstly, the proposed algorithm introduces the
cluster validity index into the clustering algorithm. Through
utilizing PBMF in the clustering algorithm, the best
clustering number can be found from the possible values
of the number of clusters objectively and automatically.

Table 2 Comparison between the hybrid clustering algorithm and the
FCM algorithm

FCM algorithm Hybrid clustering algorithm

NC SRF SFF NC SRF SFF
NC 49 14 0 50 0 0
SRF 1 36 0 0 50 0
SFF 0 0 50 0 0 50
Error (%) 10 0%
J 16.0 1.2
CPU time (s) 0.047 2.765

Secondly, the hybrid clustering algorithm believes that the
six time-domain features and the 50 samples of each cluster
have different importances to distinguishing these three
conditions of the bearings. It is able to automatically
acquire the information about the bearing data set and
assign the feature weights to the different features and
sample weights to the different samples to improve the
clustering performance. From Table 2, it is seen that the
value J of the objective function obviously drops by
applying the proposed algorithm to the bearing data set.
This implies that the proposed algorithm helps to reduce the
vagueness and the uncertainty of clustering and, therefore,
its error rate necessarily decreases.

An interesting observation from Figs. 5 and 6 is that
each of the three cluster centers in Fig. 5 is closer to the
dense area of the samples than that in Fig. 6. This
observation signifies that the cluster centers of the proposed
algorithm are close to the representative samples and far
away from the vague samples. This can be owed to sample
weighting. Sample weighting emphasizes the effect of the
representative samples, and simultaneously weakens the
interference of vague samples.

Besides, it can be seen that, in Table 2, the CPU
processing time taken to perform the proposed algorithm is
more than that of the FCM algorithm. This is because the
proposed algorithm includes several methods and is more
complex than the FCM algorithm. But, through adopting a
cluster validity index, feature weighting, and sample
weighting in the hybrid algorithm, the three shortcomings
of the FCM algorithm can be overcome and the clustering
accuracy can be greatly improved. There is always a trade-
off between computational complexity and performance
improvement. A reasonable compromise between these two
competing requirements is desirable. It is true that, in the
proposed algorithm, the performance improvement has the
price of leaning feature weights, computing sample
weights, and PBMF. Computing the sample weights and
PBMF is relatively simple. Thus, the computational
complexity mostly depends on the learning process of the
feature weights. The diagnosis result indicates that the time
(only 2.765 s) taken by the hybrid algorithm is acceptable.
Thus, the price of computational complexity is worthy and
the hybrid clustering algorithm can be applied to the fault
diagnosis of rotating machinery effectively.

5 Conclusion

In this paper, we present a new hybrid clustering algorithm
to overcome the existing three shortcomings in the fuzzy c-
means (FCM) algorithm. Firstly, three techniques, i.e.,
feature weighting based on a three-layer feed forward
neural network (FFNN), sample weighting using a distri-
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bution density function, and a cluster validity index, are
introduced. Then, they are incorporated into the FCM
algorithm to create the presented algorithm. Unlike the
existing improved algorithms, which only overcome one of
the problems of the FCM algorithm, the hybrid clustering
method overcomes all three problems simultaneously.

The presented algorithm is applied to the incipient fault
diagnosis of locomotive roller bearings. The result shows
that it not only automatically determines the proper number
of clusters, but it also significantly improves the clustering
accuracy. Thus, the proposed algorithm is a promising
approach to the incipient fault diagnosis of rollers bearings.
Of course, the algorithm discussed here can also be applied
to the fault diagnosis of other rotating machinery.
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