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Abstract—Compilers are used for creating executable modules for programs written in high-level languages;
therefore, the presence of errors in a compiler is a serious danger for the quality of the software developed with
the use of this compiler. As in the case of any other software, testing is one of the most important methods of
quality control and error detection in compilers. The survey is devoted to methods for generating, running, and
checking the quality of compiler test suites, which are based on formal specifications of the programming lan-

guage syntax and semantics.

1. INTRODUCTION

High-level languages have long been a basic tool for
the development of software. This explains why pro-
grams supporting this development process (in particu-
lar, compilers) are widely used.

Compilers translate programs from high-level lan-
guages into representations executable by the com-
puter. If there are errors in the compiler, the original
program is translated into an executable module the
behavior of which is different from that determined by
the semantics of the original program. Errors of this
kind are difficult to reveal and correct, and their pres-
ence questions the quality of the components generated
by the compiler. Undoubtedly, the compiler correctness
is fundamental to the reliable operation of any software
developed by means of this compiler, and the compiler
correctness check is critically important for improving
the software reliability.

As in the case of any other software, testing is one
of the most important methods of quality control and
error detection in compilers. Traditionally, testing
methods are divided into two groups: “white” and
“black” box methods. In the former case, the tests are
created on the basis of information about the imple-
mentation, with the use of the source code of the prod-
uct being tested. In the latter case, the test generation is
based only on the functionality description, which is
also referred to as specification.

Both methods have their advantages and disadvan-
tages. The advantage of the “white box” method is that
it allows a complete check of the efficacy of the source
program text to be performed. Such a check allows us
to detect many mistakes in the implementation but does
not guarantee that the desired functionality is imple-
mented in the system. For the latter purpose, the “black
box” methods are used, which are designed for check-
ing the correspondence of the implementation to the
requirements for the system being tested.

One of the disadvantages of the “black box” meth-
ods is that they require additional efforts for the devel-
opment of the product specification. In the case of com-
pilers, this disadvantage is not very important, since,
for the programming languages, there exists, as a rule,
informal syntax and semantics description (language
standard) and a formal syntax description (grammar).
In certain cases, a formal, complete or partial, seman-
tics description can also be available. This makes the
use of the “black box” methods for testing compilers
attractive. It is these methods that are discussed in this
survey.

The paper is organized as follows. In Section 2,
basic notions of the theory of formal languages and
compilation needed for the following discussion are
briefly considered. Sections 3—7 are devoted to testing
of various stages of the compilation process. Conclu-
sions from this survey are summarized in Section 8.

2. BASIC NOTIONS
OF THE COMPILATION THEORY

Compilation, in the most general sense, is the pro-
cess of transformations of the source program written
in an input language to a program in an output lan-
guage. Traditionally, the input language is specified by
means of a formal grammar.

A grammar is a tuple (N, T, s, P), where N is a finite
set of nonterminal symbols (nonterminals); 7'is a set of
terminal symbols (terminals), which does not intersect
with N; s is an initial symbol from N; and P is a finite
subset of the set (N U T)*N(N U T)* x (N U T)*. Pairs
from the set P are called grammar rules. A rule (n, m)
is usually written as n —» m.

A chain w is said to be directly derivable from a set
uif u=abc,w=adc,and b — d € P.The direct deriv-
ability is denoted as u =" w, where p =b —» d.
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The derivability relation is defined as a transitive
and reflexive closure of the direct derivability relation
and is denoted as =*. The expression u =* w is read
as “w is derivable from u.”

The set of chains derivable from the starting symbol
of the grammar G and containing only terminal sym-
bols is called the language generated by the grammar
G and is denoted as L(G). Such chains are called lan-
guage phrases.

A grammar (N, T, s, P) is said to be context-free if any
rule has the formn —» w, wheren e N,we (Nu T)*.

Formal grammars are convenient means for specify-
ing the language syntax. The mechanism of the context-
free grammars is not sufficient for defining semantics of
the programming language.

It is generally accepted to divide the semantics of
the programming languages into static and dynamic
semantics. Static semantics deals with the problem of
the correct use of types in a program, scopes of the
identifiers, and other properties of the program that can
be determined without running the program.

The most often used means for describing static
semantics are attribute grammars. In the attribute
grammars, each symbol of the grammar is made to cor-
respond to a finite set of attributes, and each grammar
rule, to a set of rules for evaluating the attributes corre-
sponding to the symbols of the rule. Using these rules,
one can evaluate attributes of each node of the parsing
tree.

Each rule can be associated with a context condi-
tion, which is a predicate depending on the attributes of
this rule. A program is considered to be statically cor-
rect if, after the evaluation of all attributes, the context
condition is violated in none of the nodes of the parsing
tree; i.e., the corresponding predicate takes the true
value.

The attributes can be inherited, i.e., evaluated
through the attributes of the parent node in the tree, or
synthesized, i.e., be functions of the attributes of the
descendant nodes. The attributes are made to corre-
spond to various static properties of the program and
are used for evaluating types of data and expressions,
classes of memory, and values of constant expressions.

The dynamic semantics of a programming language
defines the meaning of the execution of programs in
this language. Unlike in the case of the syntax and static
semantics, a unique formal, commonly accepted,
description of the dynamic semantics does not exist.

Traditionally, the compilation process is divided
into the following stages [1]:

1. Lexical and syntax analyses. At this stage, the
source program text is analyzed, and the parsing tree is
constructed.

2. Analysis of the static semantics. At this stage, the
parsing tree is analyzed, attributes at all nodes of the
tree are calculated, and the static correctness of the pro-
gram is verified.
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Structure of the compiler input data. Circles denote embed-
ded subsets of the set of the compiler input data.

3. Optimizing transformations. At this stage, various
transformations of the internal program representation
aimed at improving the quality of the program in accor-
dance with the selected criterion (code size, operation
rate) are carried out.

4. Code generation. The code generation consists in
creating an executable file by the given internal pro-
gram representation.

Functional decomposition of the majority of the
compilers, generally, corresponds to this scheme,
although each particular implementation has its own
specific features. For example, some compilation
stages are decomposed in several finer substages. Some
stages can be implemented in one, rather than several,
component of the system.

Let us consider the structure of the compiler input
data in more detail (see figure) and discuss how the sub-
sets of this structure are usually used for testing various
compiler stages.

The syntax of a language is specified by a grammar
containing terminal symbols, nonterminal symbols,
and productions. Chains of terminal symbols derivable
from the start symbol of the grammar are called syntac-
tically correct programs. The set of syntactically cor-
rect programs is a subset of the set of all chains of ter-
minal symbols. They are used for checking of whether
the syntax analysis stage recognizes a test as correct.
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Such programs are usually called positive test cases.
The chains that cannot be derived from the start sym-
bol, the so-called negative test cases, are used for
checking the compiler’s ability to recognize a syntax
eITor.

Static semantics is defined only for syntactically
correct programs; it defines rules for computing pro-
gram properties that can be determined without running
the program. These properties include, in particular,
types of variables and expressions. In addition to the
computation rules, rules for checking static program
correctness, or context conditions, are specified, which
impose constraints on possible combinations of values
of static program properties.

From the testing standpoint, both programs satisfy-
ing context conditions (positive test cases) and those
violating them (negative test cases) are of interest. The
programs satisfying context conditions are called stati-
cally correct programs. Statically correct programs
constitute a subset of the set of syntactically correct
programs. They are used for testing of whether the
static analysis stage in the compiler correctly recog-
nizes well-formed programs. The syntactically correct
programs violating the context conditions are used for
checking the compiler’s ability to recognize static
erTors.

Dynamic semantics of a programming language
defines the meaning of the execution of statically cor-
rect programs in this language. To test its implementa-
tion in the compiler, statically correct programs are
used, which are compiled by the compiler being tested;
the loadable modules obtained are executed, and their
observable behavior is compared with the reference
behavior determined by the dynamic language seman-
tics. Clearly, if the program observable behavior is
ambiguous, such a comparison is a very complicated
task. Therefore, for testing implementations of the
dynamic semantics in a compiler, statically correct pro-
grams with unambiguous observable behavior are used.
Such programs constitute a subset of the set of statically
correct programs.

Depending on what stage is required to test, the
object of the study is one or another subset of the struc-
ture shown in the figure. Further in this survey, for each
of the above-listed subsets, we consider various
approaches to solving the following testing problems:

(1) test case generation (writing);

(2) returning a verdict on whether the test was
passed (test oracle);

(3) estimation of the quality of the test suite (cover-
age criterion).

3. TESTING OF SYNTAX ANALYZER

The language syntax is, perhaps, the only aspect of
the programming languages the need of a formal defi-
nition of which is commonly recognized. Grammars,
owing to their nature, are an ideal tool for generating

program tests: they define a language as a set of phrases
that can be generated by successively applying rules to
an initial symbol. Thus, an algorithm for generating
programs in a language can easily be constructed by
applying and combining (in a random or regular way)
grammar rules. In view of the wide use of grammars as
means for describing languages and by virtue of their
“generating” nature, it is the grammars that are basi-
cally used for generating test programs for compilers.

The fundamental work in this field is the paper [2].
Later, it was used as a departure point by many other
researchers, who either modified the Purdom algorithm
suggested in this work or compared it with their own
algorithms.

The input data for the Purdom algorithm is a con-
text-free grammar in which the starting symbol occurs
only once, on the left-hand side of a rule. Such a con-
straint does not restrict the class of the languages under
consideration, since any context-free grammar can be
reduced to this form. The algorithm constructs a set of
phrases derivable in this grammar in such a way that
each grammar rule is applied not less than once. In
doing so, the problem is posed to minimize this set.

The algorithm works as follows. First, for each non-
terminal symbol, the minimal length of the derivation
tree is calculated, which is required in order to obtain a
string of terminal symbols. This information is used in
the second part of the algorithm.

The second part of the algorithm uses a stack for
storing the generated phrases. Initially, this stack con-
tains the starting symbol of the grammar. Then, a loop
is performed that either prints the symbol located at the
top of the stack if this symbol is terminal or, if the sym-
bol is not terminal, replaces it by the right-hand side of
the rule the left-hand side of which contains this sym-
bol. The rule to be used in the replacement is selected
from those that have not been used yet (if this is impos-
sible, from the remaining ones) as the rule with the min-
imal inference length. These actions are repeated until
the stack is empty. The phrase generated is added to the
test suite, the starting symbol is placed into the stack,
and the second part of the generation algorithm is
repeated. The loop terminates when each grammar rule
has been used at least once each.

The Purdom algorithm actually generates compact
test suites for grammars. Data regarding the application
of this algorithm to generating tests for C and C++
grammars have been presented in [3]. For the C gram-
mar, which contains 211 rules, 11 phrases have been
generated; for the C++ grammar containing 824 rules,
the test suite contained 81 phrases.

This algorithm allows one to generate phrases satis-
fying the rule coverage criterion, which requires that
each rule be used not less than once when deducing
phrases of the test suite. The fulfillment of this criterion
is a necessary requirement for any test suite. Later on,
Liammel showed [4] that the test suites based on the rule
coverage are not capable of revealing very simple errors
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in the grammar rules and suggested a more powerful
context-dependent rule coverage criterion.

To introduce this criterion, we need the following
definition.

Definition 1. Let G ={N, T, s, P) be a context-free
grammar. A direct occurrence of a nonterminal symbol
n in the grammar is any rule the right-hand side of
which contains .

The coverage criterion itself is defined as follows.

Definition 2. Let G = (N, T, s, P) be a context-free
grammar. A phrase w € T* is said to cover the rule p =
n — z for the direct occurrence ¢ = m — unv of a
symbol n if there exists the derivation s =% xmy =9
xunvy =P xuzvy =% w. A set of phrases W is said to sat-
isfy the criterion of the context-dependent rule cover-
age for the grammar G if, for any rule p =n — z and
any direct occurrence g of the symbol n, W contains a
phrase that covers the rule p for the occurrence g.

Lammel [4] showed that the context-dependent rule
coverage criterion enables creation of test suites capa-
ble of revealing a wider class of errors compared to the
rule coverage criterion.

Another coverage criterion that takes into account
the context of the grammar rule application is sug-
gested in [5]. The grammar notation makes use of the
BNF variant, which admits grouping alternatives with
the help of parentheses. Each subphrase and all nonter-
minal symbols are called branching points.

Each branching point is associated with a set of ter-
minal symbols that belong to a phrase derivable from it.
This set is called a frontal set for the given branching
point. The set consisting of all pairs (n, f), where n is a
branching point and ¢ is a terminal symbol from the
frontal set for n, is called a set of situations for the given
grammar. The coverage criterion is formulated as fol-
lows.

Definition 3. A phrase w covers a situation (n, f) for
the given grammar if there exists an inference s =*
m =" m' =% w such that r € w and the right-hand side
of a rule r contains the branching point n. A set of
phrases W is said to satisfy the situation coverage cri-
terion if, for each situation from the set of situations of
the given grammar, there exists a phrase from W that
covers it.

This coverage criterion is oriented to the LL parsers,
for which the analysis of the branching points is an
important component of the syntax analysis algorithm.

Other works devoted to the grammar-based test gen-
eration [6-10] do not introduce any coverage criteria
for the test quality analysis. If a coverage criterion is
not used, then it is not clear when the test generation
should be completed. Since almost all grammars of real
programming languages are recursive, a mechanism
preventing infinite recursion is required. For this pur-
pose, constraints on the number of rule applications or
probabilistic approaches are introduced.
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Guilmette [6] suggests an algorithm of phrase gen-
eration by a context-free grammar based on the phrase
unfolding, which begins with the start symbol. First, the
leftmost nonterminal symbol is unfolded. After this
symbol has completely been unfolded, it is replaced by
the string of symbols obtained, and the algorithm is
applied to the next nonterminal symbol from the left.
The probability that a rule is selected for the next
unfolding reduces along the unfolding branch after
each application of the rule. Since the application of the
rule after which a nonterminal is unfolded into a
sequence of nonterminal symbols stops the generation
process, this method gradually reduces the probabilities
of the applications of other rules in the course of the
unfolding and guarantees the termination of the process
in a finite time.

The alternative method based on stochastic gram-
mars [11] was employed in works [7, 8, 12]. The differ-
ence between the stochastic grammars and the ordinary
ones consists in that each rule in the former is charac-
terized by a number, weight of the rule, which deter-
mines the relative frequency of the selection of this rule
in the generation process. A stochastic grammar is said
to be consistent if it defines a stochastic language with
the following basic property: for any arbitrarily small
number €, there exists a positive integer N such that the
total probability that the length of a phrase in this lan-
guage is greater than N is less than €. This property
guarantees that the generation algorithm terminates in a
finite time. The consistency property of the stochastic
grammars is studied in [11].

The works mentioned above are devoted to the gener-
ation of phrases of a language, i.e., chains of terminal
symbols satisfying the syntax requirements. The phrases
are used for checking whether the syntax analyzer cor-
rectly recognizes well-formed programs. As is known
from practice, the testing of whether the syntax analyzer
correctly processes programs containing syntax errors is
also very important. For this purpose, programs from the
complement of the set of syntactically correct programs
in the set of all possible chains of terminal symbols (neg-
ative tests for the syntax in the figure) are used. Auto-
mated generations of such programs and the coverage
criteria for them are considered in [13].

The approach suggested in [13] is based on con-
structing, for each terminal symbol #, a set F, of possible
terminal symbols that can immediately follow ¢ in some
phrase of the language. The approach uses also the
complement N, of the set F, in the set of all terminal
symbols. This set contains symbols that cannot imme-
diately follow ¢ in the language phrases. The coverage
criteria for positive tests suggested in this work are
intended for covering all admissible sequences consist-
ing of two successive terminal symbols in various
grammar contexts. In contrast to this, for negative tests,
possible inadmissible combinations are considered.
The paper describes algorithms for generating sets F,
and N,, thus proving the existence of such algorithms.
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14 KOSSATCHEV, POSYPKIN

4. TESTING OF THE STATIC SEMANTICS
ANALYSIS STAGE

To test the static analysis stage in a compiler, stati-
cally correct programs, as well as programs from the
complement of the set of statically correct programs in
the set of syntactically correct programs (the so-called
negative tests for static semantics) are used (see figure).

To specify static semantics, attribute grammars are
most often used. An attribute grammar extends the con-
text-free grammar through the incorporation of vari-
ables called attributes, semantic functions, and context
conditions. Each grammar rule is associated with a set
of semantic functions expressing values of a node
attribute in terms of the attributes of the parent nodes
and attributes of other descendants (inherited
attributes). In addition, each rule is associated with a
context condition that determines admissible values of
the attributes of this node. A program is said to be stat-
ically correct if, after computing all attributes in the
tree of the abstract syntax, all context conditions are
true.

In [14], a technique for constructing tests for the lan-
guage static semantics based on its VDM description is
proposed. The authors suggest a criterion of the test
suite completeness based on the coverage of the context
conditions. The fulfillment of the criterion means that
the test suite contains all possible combinations of the
attribute values on which the context condition is true.
For this purpose, the context condition is represented as
a conjunction of disjunctions, and all combinations of
the attribute values for which each disjunction in the
formula takes the true value are selected.

In [15], an algorithm for the generation of test pro-
grams by a description of the language static semantics
given in the form of an attribute grammar is suggested.
For each grammar rule, a statically correct test program
derived with the help of this rule is generated.

For each rule, the construction of the test begins
with a list of strings containing one element, the right-
hand side of this rule. At each iteration, from the list of
strings constructed, the algorithm selects a string with
the least estimated length of the inference required for
transforming it to a string of terminal symbols. If this
string is a program, i.e., a string of terminal symbols
derivable from the start symbol, then the algorithm
stops. Otherwise, the list is supplemented by a set of
phrases obtained from the given phrase by one of the
following methods:

(1) a set consisting of all strings that can be obtained
by substituting the given string for one of the nontermi-
nals in the grammar production rules is constructed;

(2) one of the nonterminals in the string is selected
and is replaced by a set consisting of all strings
obtained by substituting the right-hand sides of the pro-
duction rules the left-hand side of which coincides with
this terminal.

The method to be used in a particular case is
selected heuristically with the objective of obtaining an
incorrect string as soon as possible. The fact of the
string incorrectness is determined by evaluating all
attributes of the string and verifying the context condi-
tions. The strings identified as incorrect are deleted
from the list and do not take part in the subsequent gen-
eration.

The algorithm stops in the two following cases:
(i) when a phrase in the language has been constructed
or (ii) when the list is empty. The latter implies that the
given production rule cannot be a part of the derivation
of a correct program; i.e., there is an error in the
description of the attribute grammar.

The algorithm considered generates suites of stati-
cally correct tests satisfying the rule coverage criterion,
which was suggested by P.A. Purdom for the language
syntax and does not take into account the language
semantics. This disadvantage was noted by the author
of the algorithm, and, in his later papers written jointly
with R. Lammel, new coverage criteria are suggested,
which are based on a combination of the rule coverage
criterion (context-dependent or context-independent)
and that of the attribute values coverage. The latter is a
partition (specified by the user) of the set of attribute
values into domains.

The test generation algorithm consists in the succes-
sive generation of tests satisfying the syntax coverage
criterion by an algorithm similar to Purdom’s algorithm
and the subsequent discarding of statically incorrect
tests. The generation algorithm stops either when the
coverage criterion is fulfilled or when the given con-
straint on the number of tests is exceeded.

The reachability of the coverage criterion intro-
duced by J. Harm and R. Lammel is an algorithmically
unsolvable problem, and, hence, the question of
whether the test generation algorithm stops is undecid-
able. Therefore, a constraint on the maximal number of
generated tests is required.

Itis noted in [16, 17] that it is advisable to have tests
that violate the static semantics constraints. The authors
do not formulate coverage criteria and do not suggest
algorithms for generating such tests.

In [18], the use of attribute context-free grammars
for generating test data is described. The authors allow
the so-called hybrid attributes to be used for passing
parameters up and down the parsing tree. The following
example illustrates this:

E(K) ::= [? K = 0] "a” |
[[? K =1] #K := 0] "b”

Here, the nonterminal E can be unfolded as a or b
depending on the value of K (note that, in the latter case,
this value will be modified). The expression in the
square brackets beginning with ‘?” denotes the guard
that must be a logical expression containing inherited
node attributes or synthesized attributes of the nodes on
the left of the terms. The expression in the square
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brackets beginning with ‘# denotes the evaluation of
the attribute value.

The generation begins with the start symbol, which
is unfolded successively in accordance with the gram-
mar rules from left to right. The rules are selected in a
random or regular way (which may be specified by the
user). In the course of the test generation, rules of the
evaluation of attributes and constraints are fulfilled. If a
constraint for a rule is not satisfied, another unfolding
rule is applied.

Attribute values can be specified either exactly or in
terms of certain ranges. In the latter case, when select-
ing the rules, the values of the attribute from the range
are searched through to ensure its optimal coverage.
This may be an exhaustive search of all values from the
range or selection of boundary and average values.

Methods of automated test generation and coverage
criteria for negative tests for the language semantics by
its formal description are suggested in [19]. In this
paper, the so-called constraint coverage criterion is
proposed, which is based on the analysis of the causes
of violation of the context condition. In the majority of
cases, the context condition can be formulated as simul-
taneous fulfillment of several semantic conditions, the
so-called basic conditions. The cause of the violation of
the context condition may be the violation of any basic
condition. A coverage of the constraints is achieved on
a suite of negative tests if, for any such a cause, there is
a test that violates the semantics in accordance with this
cause. The test generation algorithm consists in con-
structing syntactically correct tests and subsequently
filtering them: the test suite is supplemented by pro-
grams that violate the context conditions and enhance
the coverage. The attainability of this coverage crite-
rion for the specifications not containing redundant
basic conditions is proved in the paper.

In this section, we have discussed some approaches
to the test generation and coverage criteria for the static
semantics. The test oracles for the static semantics usu-
ally do not check the degree of correctness of the static
information and only verify whether the correct tests
are recognized correctly, whether the compiler gener-
ates codes for them, and whether the incorrect tests lead
to the error diagnosis.

5. TEST ORACLES FOR THE OPTIMIZING
TRANSFORMATION AND CODE GENERATION
STAGES

The optimization and code generation stages should
transform the original program in such a way that the
observable behavior of the program obtained would
correspond to the semantics of the original program.
Under the observable behavior, we mean the effect of
the interaction of the program with the environment, for
example, output of information on the display, informa-
tion transfer through a network, and the like.
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The approach to the program testing based on the
analysis of the observable behavior of the system being
tested is described in [20]. In accordance with this
approach, an implementation is considered to conform
to the specification if, for each test, the observable
behavior of the implementation corresponds to the
observable behavior of the specification on the same
test. The test is a system that is external with respect to
the specification and implementation and capable of
interacting with them and fixing their behaviors. The
testing process consists in comparing observable
behaviors of the specification and implementation on a
set of tests.

To implement this approach, statements for printing
values of variables [12, 19, 21-23] or expressions [9]
are inserted into the test program used for testing the
compiler. For the evaluation of reference results, an
attribute grammar [21], or a partial specification of the
dynamic semantics [9], or a different implementation
of the compiler [12] are used. In [19, 22, 23], to obtain
the reference observable behavior, an interpreter of the
dynamic semantics is used. Usually, a simplified
model, in which the program has no input data, is con-
sidered. Under such an approach, it is sufficient to eval-
uate the reference results only once and then use them
when running the tests.

The testing process consists in the test compilation
and execution of the load module followed by the com-
parison of the output flow with the reference one for the
given test. If the results are different, the verdict of an
error is returned.

The comparison of the observable behaviors can
easily be done if the program behavior is unambiguous;
otherwise, this is simply impossible. Thus, one of the
requirements imposed on a test for the dynamic seman-
tics is the uniqueness of its observable behavior. The
fulfillment of this requirement must be guaranteed by
the test generation algorithm.

6. TESTING OF THE OPTIMIZING
TRANSFORMATIONS IN A COMPILER

To test the optimizing transformations, tests are gen-
erated in such a way that the constructs to which the
optimizing transformations are applied occur in differ-
ent combinations. The algorithms designed for the gen-
eration of general-purpose tests, which are aimed at
testing general syntax and semantics of a language are
not appropriate, since they will either fail to generate
the required tests or generate an insufficient number of
the tests.

A test generator for testing optimizing transforma-
tions in FORTRAN compilers is described in [21]. The
input data for the generator are an attribute grammar
and generator adjustments, which allow the user to con-
trol the test generation. The adjustments include:
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(1) quantitative constraints (maximum nesting level
of loops and branching statements, maximal number of
statements in the loop body, and so on);

(2) types of data and variables used in the test pro-
grams;

(3) relative probabilities of the grammar rule appli-
cations.

The generation algorithm consists in the successive
unfolding of nonterminals beginning with the start
symbol. The unfolding rules are selected randomly,
with the probabilities being specified by the user. The
inherited attributes allow a grammar rule to be selected
only when the semantic constraint is true, thus restrict-
ing the number of the generated tests that violate the
semantics.

For the generated programs, the attributes are com-
pletely evaluated, and the verdict of their static correct-
ness is returned. The incorrect programs are discarded.
The verification of the dynamic correctness reduces to
checking whether there are overflows and divisions by
zero in the expressions; this is carried out at the code
generation stage. In other words, the language subset
for which the tests are generated is subjected to con-
straints that permit algorithms that generate only cor-
rect programs, the results of the operation of which can
be evaluated statically. One of such constraints is, for
example, the condition that all loops perform exactly
one iteration.

The authors do not suggest any coverage criteria for
the test selection, explaining this by the fact that the
metrics based on the rule coverage are not necessarily
adequate for estimating the quality of a test suite. The
paper also cites results of practical experiments that
substantiate the efficiency of the suggested approach.

The automated generation of programs for testing
optimizing compilers is studied in [24, 25]. For each
type of the optimizing transformations, a model lan-
guage is constructed, which defines the language subset
that contains only the constructs to which this type of
transformations can be applied.

The use of the model language allows one to
abstract from insignificant (from the standpoint of the
given optimizing transformation) possibilities and gen-
erate the tests that test only this transformation. An
appropriate coverage criterion for the optimizing trans-
formation being tested is defined in terms of the model
language.

The test generator consists of two components: an
iterator, which successively generates programs in the
model language on the basis of the coverage criterion,
and the so-called mapper, which maps programs in the
model language into programs in the target language.
The verification of the correctness of the compiler oper-
ation on a particular test consists in the comparison of
the observable program behaviors with the optimiza-
tion turned on and off.

7. TESTS FOR CHECKING DYNAMIC
SEMANTICS

The tests based on the dynamic semantics of the lan-
guage are used for checking the correctness of the code
generated by the compiler or correctness of the inter-
preter operation. For this purpose, statically correct
programs with uniquely defined observable behavior
are used (see figure).

The generation of dynamically correct programs is a
more complicated task compared to the generation of
statically correct ones. This is explained, first of all, by
difficulties associated with the formalization of the
dynamic semantics of the programming language.
Unlike the syntax and static semantics, which are suc-
cessfully described by means of formal grammars, the
dynamic semantics has no unique formal, commonly
accepted, description. The existing formal descriptions
of the dynamic semantics of real programming lan-
guages are seldom used in practice either by the com-
piler designers or by the experts in language standard-
ization.

We begin with the approaches that do not assume an
automated test generation. In works [26-28], test gen-
eration methods based on the tables and situation dia-
grams constructed by a text description of the language
are considered. Each situation contains a description of
input data (programs in the programming language)
and the effect. The latter may be a situation of the cor-
rect termination of the compilation, or error diagnosis
in the cases of tests for the static semantics, or the result
of the program operation in the case of tests intended
for the dynamic semantics.

Tests are divided into the following three categories:
correct tests, which are correct programs in C++; stati-
cally correct tests, which are designed for the verifica-
tion of whether the translator can recognize complex
language constructs; and test programs, codes contain-
ing one or more semantic errors. The last category is
intended for testing the compiler’s ability to find static
semantics errors.

The work [6] is devoted to the TGGS system, which
makes it possible to generate programs by the grammar
in which each rule is associated with a guard and a
semantic action. When selecting a current rule, the
semantic action is performed and the guard is com-
puted. If the value of the guard is “false,” then another
rule is selected.

This method of test generation can be used for cre-
ating statically correct programs with an unambiguous
observable behavior. The author illustrates this by an
example of a simple language consisting of programs
that can assign certain values to registers and print their
contents. The generator is supplemented by a semantic
action, which makes it possible to know what registers
were assigned values, and a guard, which ensures that
only the content of the initialized register is printed. It
is not quite clear from the paper whether the approach
suggested could successfully be applied to real lan-
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guages or their subsets and how to prove whether the
behavior of the generated programs is unambiguous in
the general case.

In [9], the lava language is considered, which is
designed for describing grammars in which the rules
are assigned weights, semantic actions, and guards. The
method of the test generation discussed in that work is
almost identical to that suggested in [6], except for the
fact that, for each rule, there is a possibility to limit the
maximum number of its applications. In addition, for
the sake of the user’s convenience, the generation pro-
cess is controlled by two files, where the first file con-
tains the description of the language grammar and the
second file contains some generator settings. The first
file is used for the construction of the test generator,
which, in turn, uses the file with settings for generating
the tests themselves.

The authors do not consider any covering criteria.
The problem of the construction of the test oracle is
solved by means of a partial denotational specification
of the dynamic semantics of the program. In accor-
dance with this semantics, a reference result is com-
puted for each test, which must coincide with that
obtained in the course of the actual execution of the
test. It is emphasized that, in the majority of cases, it is
sufficient to define only a part of the semantics of the
language being tested.

In the paper [12], the differential testing technology
for compilers is suggested, which consists in the fol-
lowing: the test programs are compiled by different
translators, and, if results of the execution of the pro-
grams obtained are different, the situation is considered
to be potentially erroneous. In other words, instead of
the traditional use of the program behavior specifica-
tion for the test oracle, the author suggests to compare
different implementations.

The test generator described in that paper is based
on a stochastic grammar. The static correctness of the
program is achieved through the use of a modified ver-
sion of the original grammar, in which grammar rules
take into account typing constraints. To this end, each
rule of the original grammar is replaced by several rules
each of which corresponds to a correct combination of
types for symbols on the right-hand side of the rule.
Another possible source of static errors (undefined vari-
ables) is taken into account through a special organiza-
tion of the test generation algorithm in the framework
of which only variables that have already been defined
are used in the expressions.

To generate programs with unambiguous observable
behavior, the author uses the following approach. A
statically correct program is compiled and executed. If
there appears an error during the execution of the pro-
gram, the program is generated anew, with the arith-
metic operations being replaced by calls of functions
checking the correctness of the operands. For example,
the function
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int int_shl_int_int (int val, int amt) {
assert (amt >= 0 && amt <= sizeof (int) * 8
return val << amt;

}

(replacing the left shift operation in C) checks whether
the shift is equal to a positive number of bits that does
not exceed the word length. If the introduced functions
found errors when running the “modified” program, the
test is discarded. Otherwise, the situation is assumed to
indicate a potential error in the compiler being tested.
If, after such an analysis, the cause of the error is not
found, then the test is analyzed manually.

The approach developed by McKeeman makes it
possible to reveal many cases of unambiguous observ-
able behavior, but it does not solve the problem com-
pletely, since the use of a compiler for the semantics
verification does not completely eliminate the effect of
the implementation parameters (such as type sizes in
bytes, the order of data allocation in the memory, the
order of execution of the operation operands, and so on)
on the program behavior.

A more appropriate solution to the problem of gen-
erating tests with unambiguous observable behavior is
suggested in the paper [23]. The approach discussed in
this work allows one to generate programs with unam-
biguous observable behavior, the so-called strictly con-
forming tests. To this end, a subset of the language is
separated the semantics of which is formally defined in
such a way that any statically correct problem the exe-
cution of which does not result in a specially selected
error state is a strictly conforming program with respect
to the input language. Further, this formal definition is
used for creating a semantics interpreter, which auto-
matically returns a verdict of the correctness and com-
putes the result of the program execution to be used in
the test oracle.

The semantics interpreter was generated with the
use of the Gem-Mex [29] tool from the Montages spec-
ification [30]. By means of this tool, the static and
dynamic semantics of a subset of C was defined, for
which several test suites had been generated.

In [19], the Montages formalism was used for spec-
ifying and generating tests for a compiler from the mpC
parallel programming language [31]. The authors sug-
gest a number of coverage criteria for the Montages
specifications and, in particular, coverage criteria for
the dynamic semantics. In the Montages formalism, the
execution of a program is defined as a sequence of tran-
sitions between various states, each of which meets the
abstract state machine (ASM) rules. The suggested
coverage criteria are based on a combination of cover-
age criteria for the automaton and ASM specifications.
One of them—coverage criterion by n-paths—is given
below.

Definition 1. A sequence {st,(T}), stT5), ..., st,{T,)}
is called a feasible n-path if there exists a program the
execution of the dynamic semantics of which passes suc-
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cessively through the states st, ..., st,, and, in the state
st;, rules from T7; are satisfied for all i, 1 <i<n.

Definition 2 (coverage criterion by n-paths). A test
suite satisfies the coverage criterion by n-paths if, for any
feasible n-path, there exists a program from the suite the
execution of the dynamic semantics of which passes suc-
cessively through the states st,, ..., st,, and, in the state
st;, rules from T; are satisfied for all i, 1 <i<n.

In that paper, tools for automated coverage measur-
ing and a test generation scheme that uses these tools
for filtering coverage-driven tests are considered. The
question of whether the criteria introduced are reach-
able is open; the authors do not suggest any algorithms
that could automatically solve this problem for the sug-
gested coverage criteria.

8. CONCLUSIONS

As follows from the above discussion, there cur-
rently exist many test generation methods for all com-
pilation stages. The test generation by a context-free
grammar is the most examined among them. For this
case, the coverage criteria, which are proved to be
reachable, and the algorithms of the test suite genera-
tion satisfying these criteria have been suggested.

For the tests intended for the verification of imple-
mentations of the static and dynamic language seman-
tics in a compiler, a number of coverage criteria have
been suggested. However, in contrast to the syntax-ori-
ented tests, the reachability of these tests has not been
proved, and no automatic algorithms for determining
this have been suggested.

From the practical standpoint, it can be stated that
the algorithms for generating syntax-oriented test suites
are time-tested ones. Test suites for complete grammars
of some languages, such as COBOL [4], C, and Java
[13], have been generated. There remains a question of
whether the use of automated methods for generating
semantics-oriented tests by the complete description of
the static and dynamic semantics of a real programming
language is justified from the practical standpoint, since
the approaches discussed have been tested on subsets of
real languages or on model programming languages.
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