
Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Design and implementation of the secure compiler and virtual
machine for developing secure IoT services
YangSun Lee a, Junho Jeong b, Yunsik Son b,c,∗

a Department of Computer Engineering, Seokyeong University, 16-1 Jungneung-Dong, Sungbuk-Ku, Seoul 136-704, Republic of Korea
b Department of Computer Engineering, Dongguk University, 26 3-Ga Phil-Dong, Jung-Gu, Seoul 100-715, Republic of Korea
c Department of Brain and Cognitive Engineering, Korea University, 145 Anam-ro, Seongbuk-ku, Seoul 136-713, Republic of Korea

h i g h l i g h t s

• Secure software for developing secure/trustworthy services for IoT was proposed.
• A secure compiler was used in the development phase to eliminate the weaknesses.
• A virtual machine was used in the operating phase to watch the abnormal behaviors.

a r t i c l e i n f o

Article history:
Received 15 October 2015
Received in revised form
24 February 2016
Accepted 23 March 2016
Available online xxxx

Keywords:
Secure software
IoT services
S/W weakness
Program analysis
Compiler construction
Virtual machine

a b s t r a c t

Recent years have seen the development of computing environments for IoT (Internet of Things) services,
which exchange large amounts of information using various heterogeneous devices that are always
connected to networks. Since the data communication and services occur on a variety of devices, which
not only include traditional computing environments and mobile devices such as smartphones, but also
household appliances, embedded devices, and sensor nodes, the security requirements are becoming
increasingly important at this point in time. Already, in the case of mobile applications, security has
emerged as a new issue, as the dissemination and use ofmobile applications have been rapidly expanding.
This software, including IoT services andmobile applications, is continuously exposed tomalicious attacks
by hackers, because it exchanges data in the open Internet environment. The security weaknesses of
this software are the direct cause of software breaches causing serious economic loss. In recent years,
the awareness that developing secure software is intrinsically the most effective way to eliminate the
software vulnerability, rather than strengthening the security system of the external environment, has
increased. Therefore, methodology based on the use of secure coding rules and checking tools is attracting
attention to prevent software breaches in the coding stage to eliminate the above vulnerabilities. This
paper proposes a compiler and a virtual machine with secure software concepts for developing secure
and trustworthy services for IoT environments. By using a compiler and virtual machine, we approach the
problem in two stages: a prevention stage, inwhich the secure compiler removes the securityweaknesses
from the source code during the application development phase, and a monitoring stage, in which the
secure virtual machine monitors abnormal behavior such as buffer overflow attacks or untrusted input
data handling while applications are running.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Recently, the expansion of computing environments to the
IoT (Internet of Things), and mobile and cloud computing have

∗ Corresponding author at: Department of Brain andCognitive Engineering, Korea
University, 145 Anam-ro, Seongbuk-ku, Seoul 136-713, Republic of Korea.

E-mail addresses: yslee@skuniv.ac.kr (Y. Lee), yanyenli@dongguk.edu (J. Jeong),
sonbug@dongguk.edu, sonbug@korea.ac.kr (Y. Son).

resulted in privacy and system security issues becoming more
important. Especially, the software included inmobile applications
will always be vulnerable to possible malicious attacks by hackers,
because it exchanges data in the Internet environment. These
security weaknesses are the direct cause of software breaches,
thereby causing serious economic loss. Moreover, in recent
years the computing environment has been changing into a
complicated system composed of various and heterogeneous
sensors, IoT/embedded devices, mobile devices, PCs, and servers
from the traditional environments.

http://dx.doi.org/10.1016/j.future.2016.03.014
0167-739X/© 2016 Elsevier B.V. All rights reserved.

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

http://dx.doi.org/10.1016/j.future.2016.03.014
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:yslee@skuniv.ac.kr
mailto:yanyenli@dongguk.edu
mailto:sonbug@dongguk.edu
mailto:sonbug@korea.ac.kr
http://dx.doi.org/10.1016/j.future.2016.03.014

2 Y. Lee et al. / Future Generation Computer Systems () –

In this environment everything is connected; hence, it is
difficult to apply conventional application development methods
and execution environments to this complicated system. Thus,
IoT services are vulnerable to serious security problems such as
hacking and exploiting, because almost all the devices of IoT
systems are connected to the Internet and transmit data over the
network. IoT sensors or devices are more exposed to relatively
serious security threats compared to a traditional server system
inside a firewall or IDS (Intrusion Detection System). When such
terminal devices are under external attack, the entire IoT-based
services are unable to operate normally because of the abnormal
behavior.

In this regard, offering a secure coding guide or static analysis
tools to solve softwareweaknesses from the coding stage is a trend,
nowadays. If weaknesses are considered and prevented from the
software development stage, enormous cost can be cut, compared
to the efforts to recognize and correct weaknesses in the operation
stage, and also huge contribution can be made to the development
of safe software from hackers [1,2].

Our research team isworking to solve this problemwith the aim
of producing high-quality/trustworthy IoT services by developing
technology for IoT secure software development and execution
based on a compiler and virtual machine. In this paper, we propose
the use of a secure compiler and virtual machine with a stack
monitoring method to develop secure IoT applications and protect
abnormal behavior in computing environments containing various
IoT devices.

A secure compiler was designed for preventing software
weaknesses in the source code during the application development
phase, and it is combinedwith a traditional compiler andweakness
analyzer to generate the target code and remove the weaknesses.
The secure compiler is implemented in conjunction with a virtual
machine, which monitors abnormal behavior such as buffer
overflow attacks or untrusted input data handling to protect the
system while the applications are running.

The contents of this paper are as follows. First, in Section 2,
secure coding, weakness analysis tools, and a smart cross platform
are examined. Next, in Section 3, the technique proposed in
this paper is introduced. In Section 4, the results obtained by
applying the proposed method are analyzed and evaluated. Lastly,
in Section 5, the conclusion and future direction of research are
discussed.

2. Related studies

2.1. Secure coding

The software of today exchanges data in the Internet environ-
ment, thereby making it difficult to secure the validity of the data
input and output. The possibility of being maliciously attacked by
unknown and random invaders exists. This weakness has been the
direct cause of software security incidents, which generate signif-
icant economic losses or social problems [1].

Security systems, installed to prevent security incidents from
occurring, mostly consist of firewalls, user authentication systems,
etc. However, according to a Gartner report [2], 75% of software
security incidents occur because of weaknesses in the application
programs. Therefore, rather than strengthening the security
systems for the external environment, the creation of more
secure software code by programmers is a more fundamental and
effectivemethod of increasing the security levels. However, efforts
to reduce the weaknesses of a computer system are still mainly
biased to network servers.

Recently, there has been recognition of this problem and there-
fore research on secure coding, that is, writing secure codes from
the development stage [3,4] onwards, is being carried out actively.

Especially, CWE (CommonWeakness Enumeration) [5], an organi-
zation that analyzes the weaknesses that can arise from program-
ming language, has analyzed and specified the various weaknesses
that can occur in the source code creation stage of different lan-
guages. Also, CERT (Computer Emergency Response Team) [6] has
defined secure coding rules to ensure secure source code creation.
In Cigital [7], the weaknesses can be eliminated by using the 61
rules classified according to the Seven Pernicious Kingdoms [8]
classification method proposed by Katrina Tsipenyuk, Brian Chess,
and Gary McGraw. The coding rule suggested by Cigital is defined
in XML form and can be used as an input inweakness analyzers and
other programs. Industries prone to fatal mistakes due to software
defects, such as the airplane and car industry, have implemented
coding rules, such as JSF and MISRA Coding Rule [9], to contribute
towards high quality software development.

2.2. Source code weakness analyzer

According to a report by Gartner [2], 75% of recent software se-
curity incidents were caused by applications containing vulnera-
ble points; thus, the effective detection and elimination of possible
weaknesses in a program from the application development stage
has become a very important issue.

The source code weakness analyzer is a tool which has been
developed to automatically examine theweaknesseswithin source
code after it has been created by a programmer. Programmers
aspire to have weaknesses within their programs to be entirely
eliminated. However, it is difficult to acquire expert knowledge
about weaknesses and it is difficult to recognize how to alter
such weaknesses. Therefore, there is a need for a tool capable of
automatically analyzingweaknesses at the source code level. There
exists a suitable weakness analysis method depending on each
weakness and these are broadly classified into static and dynamic
analysis methods. The static method uses technology that does not
require the subject program to run andusesmethods such as token,
AST (Abstract Syntax Tree), CGF (Control Flow Graph), DFG (Data
Flow Graph). The dynamic method uses technology that performs
a level-by-level analysis of programs while they are running and it
uses certain codes that can either be used during execution time or
by library mapping to carry out the analysis.

MOPS (MOdel Checking Programs for Security properties) [10]
is a model testing machine developed at the University of
California, Berkeley. MOPS defines the properties of security
weakness factors, and has been standardized using limited
automata. Accordingly, weaknesses that have been modeled can
all be examined at low analysis costs. However, since it does
not analyze the flow of data, there is a limit to the weaknesses
that can be analyzed. Safe-Secure C/C++ by Plum Hall [11] is
a type of compiler that has combined a compiler with a soft-
ware analysis tool. Safe-Secure C/C++ only focuses on eliminating
buffer overflow. Execution programs created using this software
are capable of eliminating buffer over-flows 100% and have less
than a 5% decrease in function compared to execution files
created by ordinary compilers. Coverity’s Coverity SAVE [12],
is a static analysis tool for source codes. Coverity SAVE shows
all weaknesses discovered in codes as a list. Each list includes
details on the location of and reason for weaknesses discovered
within each list. Fortify Static Code Analyzer (SCA) [13] is a
weakness detection tool. Fortify SCA supports C/C++, Java, and
other languages, and uses both static and dynamic analysis to
detect weaknesses in source codes. The detected weaknesses are
given to the user along with statistical data. Compass [14] is an
open source static analysis tool for C/C++ based on ROSE [15]. Rule-
based Compass uses the source-to-source framework ROSE for
source code transformations, allowing users tomodify the domain-
specific rules sets of this tool. Sparrow [16] is a tool that carries out

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

Y. Lee et al. / Future Generation Computer Systems () – 3

Fig. 1. System configuration of the Smart Cross Platform.

a semantic analysis to detect buffer overruns,memory leakage, and
other critical memory errors and is an automatic program error
analyzer based on semantic analysis. It provides information on
the analysis time, error path, and memory status of the analyzed
errors.

2.3. Smart Cross Platform

Existing smart phone content development environments re-
quire different object codes to be presented for each target device
or platform. The languages that can be developed also vary depend-
ing on the platforms. The Smart Cross Platform [17] was developed
to support platform-independent downloading and executing ap-
plication programs in the various smart devices. In addition, the
Smart Cross Platform supports multiple programming languages
by using the intermediate language named SIL, which is designed
to cover both procedural and object-oriented programming lan-
guages. Currently, the platform supports C/C++, Objective C, and
Java, which are the languages most widely used by developers.

The Smart Cross Platform consists of three main parts: a com-
piler, assembler, and virtual machine. It is designed as a hierarchal
structure to minimize the burden of the retargeting process. Fig. 1
shows a model of the Smart Cross Platform.

The SIL code is a result of the compilation process and is
changed into smart executable format (SEF) through an assembler.
The smart virtual machine (SVM) then runs the program after
receiving the SEF. The SVM is composed of fivemajor modules: the
SEF loader, stack-based interpreter, SVM built-in libraries, native
interfaces, runtime environments, and runtime environments
consisting of an exception handler, memory management, and a
thread scheduler [18]. The SVM is designed to easily add debugging
interfaces, profiling interfaces, etc. The system configuration of the
SVM is shown in Fig. 2.

The secure compiler and virtual machinewith stackmonitoring
proposed in this paper are extensions of the compiler and virtual
machine of the Smart Cross Platform.

3. Secure compiler and virtual machine for IoT services

3.1. System model

In current heterogeneous computing environments, such as the
IoT, in which everything is connected, it is difficult to apply con-
ventional application development methods and execution envi-
ronments. Our research team is working on solving this problem
with the aim of producing high-quality/trustworthy IoT services.

Our technology provides three major features: (i) the same devel-
opmental environment and common runtime, (ii) software weak-
ness eliminationmethods and secure runtimemonitoringmodule,
(iii) performance enhancement of the low computing power for IoT
devices using cloud services and offloading techniques with a vir-
tual machine. Fig. 3 shows the complete system model consisting
of secure compilers and a virtual machine.

In this paper, as a first step of this research effort, we propose a
secure coding rule-based compiler and virtualmachinewith secure
runtime focused on stack monitoring.

3.2. Secure compiler

The secure compiler was designed by adding a secure coding
rule checker and a static weakness analyzer to the compiler model
of the Smart Cross Platform [19,20]. In this study, the secure
compiler comprises eight parts as can be seen in Fig. 4.

The secure compiler provides secure features to prevent soft-
wareweaknesses in the input program source code in C/C++. It was
designed with six general compiler parts – scanner (lexical analy-
sis), parser (syntax analysis), SDT (syntax directed translation), se-
mantic analyzer, ICG (intermediate code generator), and optimizer
– and two kinds of secure parts: a secure coding rule checker and
a static weakness analyzer. The detailed information for each part
is as follows.

The scanner, parser, and SDT modules can easily be grouped as
a processor to analyze the input C/C++ programs and generate an
analyzed AST for the input programs.

The semantic analyzer checks the process of collecting symbol
information on the AST level, to verify cases which are grammati-
cally correct but semantically incorrect. Moreover, it uses the AST
and symbol table to carry out a semantic analysis of statements
and creates a semantic tree as a result. A semantic tree is a data
structure to which semantic information is added from an AST and
is not only used for generating the VM (virtual machine) code but
also for analyzing software weaknesses.

The code generation module receives the semantic tree as an
input after the analysis is complete and generates a VM codewhich
is semantically equal to the input program in C/C++.

The secure coding rule checker is the module that detects the
rule violations of the input programs. The coding rules are defined
by meta-language that was designed to describe the secure policy
of the target programming languages. The defined rules are inter-
preted by the rule checker, which analyzes the violations using the
input semantic tree with interpreted rule information [21].

The static weakness analysis module analyzes the control flow
and data flow of a source programby using the symbol information

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

4 Y. Lee et al. / Future Generation Computer Systems () –

Fig. 2. System configuration of the smart virtual machine.

Fig. 3. Secure development and execution model for IoT services.

Fig. 4. Proposed secure compiler model for C/C++ languages.

and semantic tree generated by the front end of the compiler.
Someweaknesses are too complicated to allow precise assessment
by the rule checker. In that case, the rule checker generates too
many false alarms when targeting weaknesses. Weaknesses such
as these require the use of a static weakness analysis module with
1:1 mapping routines for specific weakness analysis.

The software weaknesses that are analyzed by the proposed
compiler are collected and categorized from the top-level weak-

nesses defined by CWE and OWASP (Open Web Application Se-
curity Project) [22] for embedded systems, networks, the IoT, and
C/C++ programming languages.

The secure coding rules for IoT services are defined and catego-
rized by IoT and mobile application-specific weakness groups de-
fined during previous research [21,23]. The major weakness rules
are listed in Table 1.

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

Y. Lee et al. / Future Generation Computer Systems () – 5

Table 1
Secure coding rules for IoT applications.

Category Weakness type (No. sub category) Major secure coding rule

Language independent
Code Quality(3) Do not reuse public identifiers
Input validation(1) Sanitize untrusted data passed across a trust boundary.
Security features(1) Do not allow privileged blocks to leak sensitive information across a trust boundary

Language dependent

Class(3) Defensively copy private mutable class members before returning their references
Time and states(2) Avoid deadlock by requesting and releasing locks in the same order
Error handling(2) Prevent exceptions while logging data

Libraries(4) Do not use vulnerable APIs
Do not use deprecated methods

Security features(4) Do not use vulnerable Algorithms
Do not leak personal information

Resource usage(7) Do not allow unprivileged resources
System events(2) Must write the event handlers
Runtime environments(1) Consider multiple vendor’s device characteristics

Fig. 5. Conventional stack frame structure.

3.3. Virtual machine with stack monitoring

A stack overflow is the most typical vulnerability used by hack-
ers to attack programs and computer systems. Thus, the prevention
of stack overflow attacks serves to considerably enhance the relia-
bility of a system [24,25]. We aimed to implement secure execut-
ing environments for IoT services by proposing a VM-based stack
protection technique using separated stack frames.

A general representation of the runtime stack configuration of
programs is shown in Fig. 5. Thememory area is shared bymultiple
stack frames and a new stack frame is created at every function
calling. Each stack frame consists of an operand stack and the
function call information.

These stack structures can easily express the relationship of the
invocation of the functions; furthermore, they have advantages
such as the passing of return values and efficient memory usage.
On the other hand, they have disadvantages such as the exposure
of sensitive information and unintended control jumps, should the
stack information be compromised by a hacker [26,27].

Previous research has led to the development of techniques for
solving this problem on the system level, such as return address
encryption and stack guard [26,28,29]. However, these research
results are not applicable toVMenvironments because of extensive
executing performance degradation.

Fig. 6. Proposed stack frame structure using stack monitor.

In this work, we use the stack monitor on the VM to protect
the stack frames and reduce the loss of execution performance. A
diagram of the proposedmodel including a stackmonitor is shown
in Fig. 6.

Firstly, all stack frames are isolated by other frames. Thus,
compromised information at one stack frame does not affect other
stack frames. Next, the return address is managed by the stack
monitor,which determineswhether a change of return address has
occurred. Also, at this time, the stackmonitor records the stack size
on the caller side to verifywhether the caller’s stack framehas been
tampered with.

Each stack frame was isolated from other stack frames as in
the sandbox model used for objects/applications in management
techniques. Moreover, the main attack target as return address
will be duplicated on the stack monitor; thus, we can easily detect
whether the address value has been subject to tampering.

Details of the stack framemanagement techniques using a stack
monitor are presented in Table 2.

This technique does not affect the other stacks, even if the stack
frame is tainted by the hacker’s attacks. Also, it is impossible to
jump to the point the hacker intended attacking when a change of
return address has occurred. Therefore, when the attack involves
an application in a virtual machine environment, the proposed

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

6 Y. Lee et al. / Future Generation Computer Systems () –

Table 2
Proposed stack frame structure using stack monitor.

1. Record the frame address to stack monitor when the stack frame is created, and write the table pointer information of the stack monitor on the stack frame. This
stack frame address is cross referenced.
2. Create a new stack frame when the function is invoked, and the stack monitor writes the stack frame size and stack top pointer of the caller.
3. Record the return address of the callee on the return address table of the stack monitor.
4. At the return time of the called function, the stack monitor judges whether the frame address is damaged by comparing the monitor pointer in the activation stack
frame and the frame pointer address of the stack monitor.
5. If the result is normal, the stack monitor compares the return address in the stack frame and that of the monitor.
6. If the return address matches, the stack monitor inspects the stack size of the caller by using the recorded information in the stack size table.
7. If the size is the same, the return value is copied by the stack monitor using the stack top pointer table, and the activation stack frame is changed to the caller’s stack
frame and the callee’s stack frame is removed.
8. If problems occurred at steps 4, 5, 6, and 7 then the stack monitor regarded as the stack has been compromised and exception handling is executed.

Table 3
Weakness check result for 47 items.

ID Fortify Compass/
ROSE

Proposed
compiler

ID Fortify Compass/
ROSE

Proposed
compiler

ID Fortify Compass/
ROSE

Proposed
compiler

1 ⃝ ⃝ 17 33 ⃝

2 ⃝ ⃝ 18 34 ⃝ ⃝

3 ⃝ ⃝ 19 ⃝ 35 ⃝ ⃝

4 ⃝ ⃝ 20 ⃝ ⃝ 36 ⃝ ⃝

5 ⃝ ⃝ 21 ⃝ ⃝ 37 ⃝ ⃝ ⃝

6 ⃝ ⃝ 22 ⃝ ⃝ ⃝ 38 ⃝

7 ⃝ ⃝ 23 ⃝ ⃝ 39
8 ⃝ ⃝ ⃝ 24 ⃝ ⃝ 40 ⃝ ⃝ ⃝

9 ⃝ 25 ⃝ ⃝ 41
10 26 ⃝ ⃝ 42 ⃝ ⃝ ⃝

11 ⃝ ⃝ 27 ⃝ ⃝ 43 ⃝ ⃝ ⃝

12 ⃝ ⃝ 28 ⃝ ⃝ 44 ⃝ ⃝

13 ⃝ ⃝ 29 ⃝ ⃝ 45 ⃝ ⃝

14 ⃝ ⃝ ⃝ 30 ⃝ ⃝ 46 ⃝ ⃝

15 ⃝ ⃝ ⃝ 31 47 ⃝ ⃝ ⃝

16 32 ⃝ Total 37 9 38

method can block sensitive data or system control from being
obtained, and can handle exceptions for applications where the
problem occurs.

4. Experimental results

4.1. Smart Cross Platform

In this section, we use the compiler we developed to experi-
ment with the diagnosis of weaknesses that may occur in mobile
applications. We selected Fortify and Compass/ROSE to compare
the performance of the implemented compiler. These two selected
open source software testing tools can inspect the programs writ-
ten in C/C++. The secure coding rules for IoT applications used in
the implemented compiler were defined during previous research
and in Section 3.2.

Firstly, we determine the range of the weakness check for the
implemented compiler and selected tools. Table 3 lists the check-
ableweaknesses from the 47weaknesses released by the KISA (Ko-
rea Internet & Security Agency) and Ministry of the Interior [30]
using three tools: Fortify, Compass/ROSE, and the implemented
secure compiler. Fortify and Compass/ROSE are general software
analysis tools; therefore, we selected 47 rules to ensure a reason-
able comparison. The 47 weaknesses were selected because they
can be applied to IoT environments.

Fortify has 37 items andCompass/ROSEhas 9 items, as indicated
in Table 3, and the proposed compiler checks 38 items of the
total 47 items. The implemented compiler is able to cover all the
different kinds of weaknesses checked by the two tools except for
ID 9 and ID 32.

In addition, obtaining a false positive with the tool that checks
the weaknesses is also a very important performance metric. For
the 38 weaknesses that were checked by tools used in the exper-
iment, we used the test source programs that were selected from

Table 4
Performance of proposed protection technique.

Test category memcpy memmove socket fget memalloc

Original SVM 100.0% 100.0% 100.0% 100.0% 100.0%
Proposed VM with
stack monitoring

104.0% 106.3% 107.5% 105.5% 106.5%

SAMATE (Software Assurance Metrics And Tool Evaluation) [31],
and each false positive result is shown in Fig. 7. The experimen-
tal results show that the proposed compiler obtained fewer false
positive outcomes compared to the other tools, except for ID 36.
The checkable weakness for each of the tools is Fortify 59.4%, Com-
pass/ROSE66.1%, proposed compiler 53.6% of the average false pos-
itives, respectively. The experimental result of the analysis showed
the compiler proposed in this paper to be superior compared to the
tools with which its performance is compared.

Next, to verify the efficiency of the stack monitoring, we used
the SAMATE test suits for stack-based overflow andmodified them
to run on the proposed VM. The experimental results enabled us
to confirm the ability of the exception handler to perform satis-
factorily during attacks. Furthermore, the proposed VMwith stack
monitoring has 4%–7% overhead compared with the original SVM
[17,18]. Test source program categories and execution perfor-
mance rates are listed in Table 4.

5. Conclusions and further research

This paper describes tools to develop and execute secure soft-
ware for IoT services. Today, the security schemes of most soft-
ware rely extensively on complementary tools such as firewalls
and user authentication. However, the percentage of such tools in-
volved in software security violations accounted for only 25% of
security breaches. The other 75% of security violations occurred

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

Y. Lee et al. / Future Generation Computer Systems () – 7

Fig. 7. False positive rate of tested analyzer (0% item means the case cannot be examined).

due to software code containing weaknesses; thus, the most ef-
fective way of enhancing the level of security is to have program-
mers write robust code from the start. Weaknesses in source codes
can be diagnosed by the weakness analysis tools that are cur-
rently available. However, it is difficult to effectively eliminate
weaknesses with this method because it requires the repeated ex-
ecution of weakness analysis through a separate analyzer after
correcting pre-detected weaknesses. The detection of bugs for IoT
services relies mostly on classic software test methodology and
classic test automation tools. This methodology separates the de-
velopment process from the test process, serving as a factor that
complicates problem analysis and correcting errors in the begin-
ning of the development process.

An expanded compiler for weakness analysis and a virtual ma-
chine with stack monitoring were proposed in this study to exam-
ine theweaknesses that can existwithin programs at the beginning
of IoT application development and to monitor abnormal behavior
of service execution. In addition, we expect the proposed compiler
to expand the coverage of previous IoT service developmental plat-
forms and reduce the cost of developing secure services.

Next, the proposed VM-based stack protection technique iso-
lates the stack frames and monitors them using the stack moni-
tor. In this way it is possible to block a hacker’s attack aimed at
overwriting the stack contents by unsanitized input values at the
function call to obtain sensitive data or control of the system. This
approach does not only enable the development of applications
that are robust against external attacks, but it also reduces the huge
cost associated with preventing problems anticipated at the ser-
vice operational stage.

In future, research on automating the addition of analysis mod-
ules to compilers will be carried out. This requires the rules for
secure coding to be standardized and research on automatic read-
ing and rules analysis written in the Meta language will be car-
ried out. In addition, there is a need to review the execution speed
and the precision of the analysis results for the proposed expanded
compiler. And, as a runtime of the IoT services, research on com-
paction of the VM, for example by minimizing the instruction set,
optimizing the interpreter, and a computation offloading method
using cloud services, are needed.

Acknowledgments

This research was supported by Basic Science Research Pro-
gram through the National Research Foundation of Korea (NRF)
funded by the Ministry of Science, ICT and Future Planning (No.
2013R1A2A2A01067205) and supported by a Korea University
Grant.

References

[1] G. McGraw, Software Security: Building Security In, Addison-Wesley, 2006.
[2] Theresa Lanowitz, Now is the time for security at the application level, Gartner,

2005.
[3] Viega, G. MaGraw, Software Security, How to Avoid Security Problems the

Right Way, Addison-Wesley, 2006.
[4] B. Chess, J. West, Secure Programming with Static Analysis, Addison-Wesley,

2007.
[5] CommonWeakness Enumeration (CWE): A community-Developed Dictionary

of Software Weakness Types. http://cwe.mitre.org/.
[6] SEI CERT Coding Standards: https://www.securecoding.cert.org/confluence/

display/seccode/SEI+CERT+Coding+Standards.
[7] Cigital Cigital Java Security Rulepack: http://www.cigital.com/securitypack/

view/index.html.
[8] K. Tsipenyuk, B. Chess, G. McGraw, Seven pernicious kingdoms: a taxonomy of

software security errors, IEEE Secur. Privacy (2005) 81–84.
[9] MISRA C: http://www.misra.org.uk/misra-c/Activities/MISRAC/tabid/160/

Default.aspx.
[10] H. Chen, D.Wagner,MOPS: an infrastructure for examining security properties

of software, in: Proceedings of the 9th ACM Conference on Computer and
Communications Security, 2002, pp. 235–244.

[11] Plum Hall Inc. Overview of Safe-Secure Project: Safe-Secure C/C++, 2006.
http://www.plumhall.com/SSCC_MP_071b.pdf.

[12] Coverity SAVE: http://www.coverity.com/products/coverity-save/.
[13] Fortify Static Code Analyzer: http://www8.hp.com/us/en/software-solutions/

static-code-analysis-sast/index.html.
[14] Compass http://rosecompiler.org/?page_id=16.
[15] ROSE compiler infrastructure: http://www.rosecompiler.org/ROSE_HTML_

Reference/index.html.
[16] Sparrow http://en.fasoo.com/SPARROW.
[17] Y.S. Lee, Y.S. Son, A study on the smart virtual machine for smart devices, Inf.

Int. Interdiscip. J. 16 (2) (2013) 1465–1472.
[18] Y.S. Lee, Y.S. Son, A study on the smart virtual machine for executing virtual

machine codes on smart platforms, Int. J. Smart Home 6 (4) (2012) 93–105.
[19] Y. Son, Y.S. Lee, Design and implementation of an objective-C compiler for the

virtual machine on smart phone, Commun. Comput. Inf. 262 (2011) 52–59.
[20] Y.S Lee, Y. Son, A study on verification and analysis of symbol tables for

development of the C++ compiler, Int. J.Multimed. Ubiquitous Eng. 7 (4) (2012)
175–186.

[21] Y.S. Son, S.M. Oh, Design and implementation of a compiler with secure coding
rules for secure mobile applications, Int. J. Secur. Appl. 6 (4) (2012) 201–206.

[22] Open Web Application Security Project: https://www.owasp.org/index.php/
Main_Page.

[23] Y. Son, I. Mun, S. Ko, S. Oh, A study on the weakness categorization for mobile
applications, Korea Comput. Congr. 39 (1(A)) (2012) 434–436.

[24] R. Kumar, E. Kohler,M. Srivastava, Harbor: software-basedmemory protection
for sensor nodes, in: ACM Proceedings of the 6th International Conference on
Information Processing in Sensor Networks, 2007, pp. 340–349.

[25] A. Averbuch, M. Kiperberg, N.J. Zaidenberg, An efficient vm-based software
protection, in: IEEE 5th International Conference on Network and System
Security, 2011, pp. 121–128.

[26] C. Cowan, P. Wagle, C. Pu, S. Beattie, J. Walpole, Buffer overflows: Attacks
and defenses for the vulnerability of the decade, in: DARPA Information
Survivability Conference and Exposition, Vol. 2, 2000, pp. 119–129.

[27] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund, T. Walter,
Breaking the memory secrecy assumption, in: Proceedings of the 2nd
European Workshop on System Security, 2009, pp. 1–8.

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

http://refhub.elsevier.com/S0167-739X(16)30058-9/sbref1
http://refhub.elsevier.com/S0167-739X(16)30058-9/sbref3
http://refhub.elsevier.com/S0167-739X(16)30058-9/sbref4
http://cwe.mitre.org/
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards
http://www.cigital.com/securitypack/view/index.html
http://www.cigital.com/securitypack/view/index.html
http://www.cigital.com/securitypack/view/index.html
http://www.cigital.com/securitypack/view/index.html
http://www.cigital.com/securitypack/view/index.html
http://www.cigital.com/securitypack/view/index.html
http://www.cigital.com/securitypack/view/index.html
http://www.cigital.com/securitypack/view/index.html
http://refhub.elsevier.com/S0167-739X(16)30058-9/sbref8
http://www.misra.org.uk/misra-c/Activities/MISRAC/tabid/160/Default.aspx
http://www.misra.org.uk/misra-c/Activities/MISRAC/tabid/160/Default.aspx
http://www.misra.org.uk/misra-c/Activities/MISRAC/tabid/160/Default.aspx
http://www.misra.org.uk/misra-c/Activities/MISRAC/tabid/160/Default.aspx
http://www.misra.org.uk/misra-c/Activities/MISRAC/tabid/160/Default.aspx
http://www.misra.org.uk/misra-c/Activities/MISRAC/tabid/160/Default.aspx
http://www.misra.org.uk/misra-c/Activities/MISRAC/tabid/160/Default.aspx
http://www.misra.org.uk/misra-c/Activities/MISRAC/tabid/160/Default.aspx
http://www.misra.org.uk/misra-c/Activities/MISRAC/tabid/160/Default.aspx
http://www.misra.org.uk/misra-c/Activities/MISRAC/tabid/160/Default.aspx
http://www.misra.org.uk/misra-c/Activities/MISRAC/tabid/160/Default.aspx
http://www.misra.org.uk/misra-c/Activities/MISRAC/tabid/160/Default.aspx
http://www.plumhall.com/SSCC_MP_071b.pdf
http://www.coverity.com/products/coverity-save/
http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/index.html
http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/index.html
http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/index.html
http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/index.html
http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/index.html
http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/index.html
http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/index.html
http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/index.html
http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/index.html
http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/index.html
http://rosecompiler.org/?page_id%3D16
http://www.rosecompiler.org/ROSE_HTML_Reference/index.html
http://www.rosecompiler.org/ROSE_HTML_Reference/index.html
http://www.rosecompiler.org/ROSE_HTML_Reference/index.html
http://www.rosecompiler.org/ROSE_HTML_Reference/index.html
http://www.rosecompiler.org/ROSE_HTML_Reference/index.html
http://www.rosecompiler.org/ROSE_HTML_Reference/index.html
http://www.rosecompiler.org/ROSE_HTML_Reference/index.html
http://www.rosecompiler.org/ROSE_HTML_Reference/index.html
http://www.rosecompiler.org/ROSE_HTML_Reference/index.html
http://en.fasoo.com/SPARROW
http://refhub.elsevier.com/S0167-739X(16)30058-9/sbref17
http://refhub.elsevier.com/S0167-739X(16)30058-9/sbref18
http://refhub.elsevier.com/S0167-739X(16)30058-9/sbref19
http://refhub.elsevier.com/S0167-739X(16)30058-9/sbref20
http://refhub.elsevier.com/S0167-739X(16)30058-9/sbref21
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
http://refhub.elsevier.com/S0167-739X(16)30058-9/sbref23

8 Y. Lee et al. / Future Generation Computer Systems () –

[28] C. Cowan, C. Pu, D.Maier, J.Walpole, P. Bakke, S. Beattie, H. Hinton, StackGuard:
Automatic adaptive detection and prevention of buffer-overflow attacks,
Usenix Secur. 98 (1998) 63–78.

[29] P. Wagle, C. Cowan, Stackguard: Simple stack smash protection for GCC, in:
Proceedings of the GCC Developers Summit, 2003, pp. 243–255.

[30] Secure Software Development Guides. http://www.mogaha.go.kr/frt/bbs/
type001/commonSelectBoardArticle.do?bbsId=BBSMSTR_000000000012.

[31] Juliet Test Suite for C/C++. http://samate.nist.gov/SRD/testsuite.php.

YangSun Lee received the B.S. degree from the Dept.
of Computer Science, Dongguk University, Seoul, Korea,
in 1985, and M.S. and Ph.D. degrees from Dept. of
Computer Engineering, Dongguk University, Seoul, Korea
in 1987 and 2003, respectively. He was a Manager of
the Computer Center, Seokyeong University from 1996
to 2000, a Director of Korea Multimedia Society from
2004 to 2005, a General Director of Korea Multimedia
Society from 2005 to 2006 and a Vice President of Korea
Multimedia Society in 2009. Currently, he is a Professor
of Dept. of Computer Engineering, Seokyeong University,

Seoul, Korea. His research areas include smart system, programming languages, and
embedded systems.

Junho Jeong received the B.S. and M.S. degrees in
computer engineering from Dongguk University, Seoul,
Korea in 2007 and 2009 respectively. He is a doctoral
candidate in computer engineering at DonggukUniversity.
His research interests include in information security
system, distributed processing system, distributed and
parallel algorithms, and cloud security.

Yunsik Son received the B.S. degree from the Dept.
of Computer Science, Dongguk University, Seoul, Korea,
in 2004, and M.S. and Ph.D. degrees from the Dept.
of Computer Engineering, Dongguk University, Seoul,
Korea in 2006 and 2009, respectively. Currently, he is
a Researcher of the Dept. of Computer Science and
Engineering, Dongguk University, Seoul, Korea. Also, he
is a research professor of Dept. of Brain and Cognitive
Engineering, Korea University, Seoul, Korea. His research
areas include secure software, programming languages,
compiler construction, mobile/embedded systems, and u-

Healthcare.

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

http://refhub.elsevier.com/S0167-739X(16)30058-9/sbref28
http://www.mogaha.go.kr/frt/bbs/type001/commonSelectBoardArticle.do?bbsId=BBSMSTR_000000000012
http://www.mogaha.go.kr/frt/bbs/type001/commonSelectBoardArticle.do?bbsId=BBSMSTR_000000000012
http://www.mogaha.go.kr/frt/bbs/type001/commonSelectBoardArticle.do?bbsId=BBSMSTR_000000000012
http://www.mogaha.go.kr/frt/bbs/type001/commonSelectBoardArticle.do?bbsId=BBSMSTR_000000000012
http://www.mogaha.go.kr/frt/bbs/type001/commonSelectBoardArticle.do?bbsId=BBSMSTR_000000000012
http://www.mogaha.go.kr/frt/bbs/type001/commonSelectBoardArticle.do?bbsId=BBSMSTR_000000000012
http://www.mogaha.go.kr/frt/bbs/type001/commonSelectBoardArticle.do?bbsId=BBSMSTR_000000000012
http://www.mogaha.go.kr/frt/bbs/type001/commonSelectBoardArticle.do?bbsId=BBSMSTR_000000000012
http://www.mogaha.go.kr/frt/bbs/type001/commonSelectBoardArticle.do?bbsId=BBSMSTR_000000000012
http://www.mogaha.go.kr/frt/bbs/type001/commonSelectBoardArticle.do?bbsId=BBSMSTR_000000000012
http://www.mogaha.go.kr/frt/bbs/type001/commonSelectBoardArticle.do?bbsId=BBSMSTR_000000000012
http://www.mogaha.go.kr/frt/bbs/type001/commonSelectBoardArticle.do?bbsId=BBSMSTR_000000000012
http://samate.nist.gov/SRD/testsuite.php

	Design and implementation of the secure compiler and virtual machine for developing secure IoT services
	Introduction
	Related studies
	Secure coding
	Source code weakness analyzer
	Smart Cross Platform

	Secure compiler and virtual machine for IoT services
	System model
	Secure compiler
	Virtual machine with stack monitoring

	Experimental results
	Smart Cross Platform

	Conclusions and further research
	Acknowledgments
	References

