
Decentralized Access Control with Anonymous
Authentication of Data Stored in Clouds

Sushmita Ruj, Member, IEEE, Milos Stojmenovic, Member, IEEE, and

Amiya Nayak, Senior Member, IEEE

Abstract—We propose a new decentralized access control scheme for secure data storage in clouds that supports anonymous

authentication. In the proposed scheme, the cloud verifies the authenticity of the series without knowing the user’s identity before storing

data. Our scheme also has the added feature of access control in which only valid users are able to decrypt the stored information. The

scheme prevents replay attacks and supports creation, modification, and reading data stored in the cloud. We also address user

revocation. Moreover, our authentication and access control scheme is decentralized and robust, unlike other access control schemes

designed for clouds which are centralized. The communication, computation, and storage overheads are comparable to centralized

approaches.

Index Terms—Access control, authentication, attribute-based signatures, attribute-based encryption, cloud storage

Ç

1 INTRODUCTION

RESEARCH in cloud computing is receiving a lot of
attention from both academic and industrial worlds.

In cloud computing, users can outsource their computation
and storage to servers (also called clouds) using Internet.
This frees users from the hassles of maintaining resources
on-site. Clouds can provide several types of services like
applications (e.g., Google Apps, Microsoft online), infra-
structures (e.g., Amazon’s EC2, Eucalyptus, Nimbus), and
platforms to help developers write applications (e.g.,
Amazon’s S3, Windows Azure).

Much of the data stored in clouds is highly sensitive, for

example, medical records and social networks. Security and

privacy are, thus, very important issues in cloud comput-

ing. In one hand, the user should authenticate itself before

initiating any transaction, and on the other hand, it must be

ensured that the cloud does not tamper with the data that is

outsourced. User privacy is also required so that the cloud

or other users do not know the identity of the user. The

cloud can hold the user accountable for the data it

outsources, and likewise, the cloud is itself accountable

for the services it provides. The validity of the user who

stores the data is also verified. Apart from the technical

solutions to ensure security and privacy, there is also a need

for law enforcement.

Recently, Wang et al. [2] addressed secure and depend-
able cloud storage. Cloud servers prone to Byzantine
failure, where a storage server can fail in arbitrary ways
[2]. The cloud is also prone to data modification and server
colluding attacks. In server colluding attack, the adversary
can compromise storage servers, so that it can modify data
files as long as they are internally consistent. To provide
secure data storage, the data needs to be encrypted.
However, the data is often modified and this dynamic
property needs to be taken into account while designing
efficient secure storage techniques.

Efficient search on encrypted data is also an important
concern in clouds. The clouds should not know the query
but should be able to return the records that satisfy the
query. This is achieved by means of searchable encryption
[3], [4]. The keywords are sent to the cloud encrypted, and
the cloud returns the result without knowing the actual
keyword for the search. The problem here is that the data
records should have keywords associated with them to
enable the search. The correct records are returned only
when searched with the exact keywords.

Security and privacy protection in clouds are being
explored by many researchers. Wang et al. [2] addressed
storage security using Reed-Solomon erasure-correcting
codes. Authentication of users using public key crypto-
graphic techniques has been studied in [5]. Many homo-
morphic encryption techniques have been suggested [6], [7]
to ensure that the cloud is not able to read the data while
performing computations on them. Using homomorphic
encryption, the cloud receives ciphertext of the data and
performs computations on the ciphertext and returns the
encoded value of the result. The user is able to decode the
result, but the cloud does not know what data it has
operated on. In such circumstances, it must be possible for
the user to verify that the cloud returns correct results.

Accountability of clouds is a very challenging task and
involves technical issues and law enforcement. Neither
clouds nor users should deny any operations performed or
requested. It is important to have log of the transactions
performed; however, it is an important concern to decide

384 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2014

. S. Ruj is with Indian Statistical Institute, 203 B.T. Road, Kolkata 700108,
India. E-mail: sush@isical.ac.in.

. M. Stojmenovic is with the Univerzitet Singidunum, Danijelova 32,
Belgrade 11000, Serbia. E-mail: mstojmenovic@singidunum.ac.rs.

. A. Nayak is with the School of Electrical Engineering and Computer
Science, University of Ottawa, 800 King Edward, Ottawa K1N6N5, ON,
Canada. E-mail: anayak@site.uottawa.ca.

Manuscript received 30 Sept. 2012; revised 28 Dec. 2012; accepted 11 Jan.
2013; published online 14 Feb. 2013.
Recommended for acceptance by X. Li, P. McDaniel, R. Poovendran, and
G. Wang.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number
TPDSSI-2012-09-1006.
Digital Object Identifier no. 10.1109/TPDS.2013.38.

1045-9219/14/$31.00 � 2014 IEEE Published by the IEEE Computer Society

how much information to keep in the log. Accountability
has been addressed in TrustCloud [8]. Secure provenance
has been studied in [9].

Considering the following situation: A law student,
Alice, wants to send a series of reports about some
malpractices by authorities of University X to all the
professors of University X, research chairs of universities in
the country, and students belonging to Law department in
all universities in the province. She wants to remain
anonymous while publishing all evidence of malpractice.
She stores the information in the cloud. Access control is
important in such case, so that only authorized users can
access the data. It is also important to verify that the
information comes from a reliable source. The problems of
access control, authentication, and privacy protection
should be solved simultaneously. We address this problem
in its entirety in this paper.

Access control in clouds is gaining attention because it is
important that only authorized users have access to valid
service. A huge amount of information is being stored in the
cloud, and much of this is sensitive information. Care
should be taken to ensure access control of this sensitive
information which can often be related to health, important
documents (as in Google Docs or Dropbox) or even
personal information (as in social networking). There are
broadly three types of access control: user-based access control
(UBAC), role-based access control (RBAC), and attribute-based
access control (ABAC). In UBAC, the access control list
contains the list of users who are authorized to access data.
This is not feasible in clouds where there are many users. In
RBAC (introduced by Ferraiolo and Kuhn [10]), users are
classified based on their individual roles. Data can be
accessed by users who have matching roles. The roles are
defined by the system. For example, only faculty members
and senior secretaries might have access to data but not the
junior secretaries. ABAC is more extended in scope, in
which users are given attributes, and the data has attached
access policy. Only users with valid set of attributes,
satisfying the access policy, can access the data. For
instance, in the above example certain records might be
accessible by faculty members with more than 10 years of
research experience or by senior secretaries with more than
8 years experience. The pros and cons of RBAC and ABAC
are discussed in [11]. There has been some work on ABAC
in clouds (for example, [12], [13], [14], [15], [16]). All these
work use a cryptographic primitive known as attribute-
based encryption (ABE). The eXtensible access control
markup language [17] has been proposed for ABAC in
clouds [18].

An area where access control is widely being used is
health care. Clouds are being used to store sensitive
information about patients to enable access to medical
professionals, hospital staff, researchers, and policy makers.
It is important to control the access of data so that only
authorized users can access the data. Using ABE, the
records are encrypted under some access policy and stored
in the cloud. Users are given sets of attributes and
corresponding keys. Only when the users have matching
set of attributes, can they decrypt the information stored in
the cloud. Access control in health care has been studied in
[12] and [13].

Access control is also gaining importance in online social
networking where users (members) store their personal
information, pictures, videos and share them with selected
groups of users or communities they belong to. Access
control in online social networking has been studied in [19].
Such data are being stored in clouds. It is very important
that only the authorized users are given access to those
information. A similar situation arises when data is stored
in clouds, for example, in Dropbox, and shared with certain
groups of people.

It is just not enough to store the contents securely in the
cloud but it might also be necessary to ensure anonymity of
the user. For example, a user would like to store some
sensitive information but does not want to be recognized.
The user might want to post a comment on an article, but
does not want his/her identity to be disclosed. However,
the user should be able to prove to the other users that he/
she is a valid user who stored the information without
revealing the identity. There are cryptographic protocols
like ring signatures [20], mesh signatures [21], group
signatures [22], which can be used in these situations. Ring
signature is not a feasible option for clouds where there are
a large number of users. Group signatures assume the pre-
existence of a group which might not be possible in clouds.
Mesh signatures do not ensure if the message is from a
single user or many users colluding together. For these
reasons, a new protocol known as attribute-based signature
(ABS) has been applied. ABS was proposed by Maji et al.
[23]. In ABS, users have a claim predicate associated with a
message. The claim predicate helps to identify the user as
an authorized one, without revealing its identity. Other
users or the cloud can verify the user and the validity of the
message stored. ABS can be combined with ABE to achieve
authenticated access control without disclosing the identity
of the user to the cloud.

Existing work [12], [13], [14], 15], [16], [18], [38] on access
control in cloud are centralized in nature. Except [38] and
[18], all other schemes use ABE. The scheme in [38] uses a
symmetric key approach and does not support authentica-
tion. The schemes [12], [13], [16] do not support authentica-
tion as well. Earlier work by Zhao et al. [15] provides
privacy preserving authenticated access control in cloud.
However, the authors take a centralized approach where a
single key distribution center (KDC) distributes secret keys
and attributes to all users. Unfortunately, a single KDC is
not only a single point of failure but difficult to maintain
because of the large number of users that are supported in a
cloud environment. We, therefore, emphasize that clouds
should take a decentralized approach while distributing
secret keys and attributes to users. It is also quite natural for
clouds to have many KDCs in different locations in the
world. Although Yang et al. [34] proposed a decentralized
approach, their technique does not authenticate users, who
want to remain anonymous while accessing the cloud. In an
earlier work, Ruj et al. [16] proposed a distributed access
control mechanism in clouds. However, the scheme did not
provide user authentication. The other drawback was that a
user can create and store a file and other users can only read
the file. Write access was not permitted to users other than
the creator. In the preliminary version of this paper [1], we

RUJ ET AL.: DECENTRALIZED ACCESS CONTROL WITH ANONYMOUS AUTHENTICATION OF DATA STORED IN CLOUDS 385

extend our previous work with added features that enables
to authenticate the validity of the message without
revealing the identity of the user who has stored informa-
tion in the cloud. In this version we also address user
revocation, that was not addressed in [1]. We use ABS
scheme [24] to achieve authenticity and privacy. Unlike
[24], our scheme is resistant to replay attacks, in which a
user can replace fresh data with stale data from a previous
write, even if it no longer has valid claim policy. This is an
important property because a user, revoked of its attributes,
might no longer be able to write to the cloud. We, therefore,
add this extra feature in our scheme and modify [24]
appropriately. Our scheme also allows writing multiple
times which was not permitted in our earlier work [16].

1.1 Our Contributions

The main contributions of this paper are the following:

1. Distributed access control of data stored in cloud so
that only authorized users with valid attributes can
access them.

2. Authentication of users who store and modify their
data on the cloud.

3. The identity of the user is protected from the cloud
during authentication.

4. The architecture is decentralized, meaning that there
can be several KDCs for key management.

5. The access control and authentication are both
collusion resistant, meaning that no two users can
collude and access data or authenticate themselves,
if they are individually not authorized.

6. Revoked users cannot access data after they have
been revoked.

7. The proposed scheme is resilient to replay attacks. A
writer whose attributes and keys have been revoked
cannot write back stale information.

8. The protocol supports multiple read and write on
the data stored in the cloud.

9. The costs are comparable to the existing centralized
approaches, and the expensive operations are mostly
done by the cloud.

1.2 Organization

The paper is organized as follows: Related work is
presented in Section 2. The mathematical background and
assumptions are detailed in Section 3. We present our
privacy preserving access control scheme in Section 4
followed by a real life example in Section 5. The security
is analyzed in Section 6. Computation complexity is
discussed in Section 7, and comparison with other work is
presented in Section 8. We conclude in Section 9.

2 RELATED WORK

ABE was proposed by Sahai and Waters [26]. In ABE, a user
has a set of attributes in addition to its unique ID. There are
two classes of ABEs. In key-policy ABE or KP-ABE (Goyal
et al. [27]), the sender has an access policy to encrypt data. A
writer whose attributes and keys have been revoked cannot
write back stale information. The receiver receives attributes
and secret keys from the attribute authority and is able to

decrypt information if it has matching attributes. In
Ciphertext-policy, CP-ABE ([28], [29]), the receiver has the
access policy in the form of a tree, with attributes as leaves
and monotonic access structure with AND, OR and other
threshold gates.

All the approaches take a centralized approach and
allow only one KDC, which is a single point of failure.
Chase [30] proposed a multiauthority ABE, in which there
are several KDC authorities (coordinated by a trusted
authority) which distribute attributes and secret keys to
users. Multiauthority ABE protocol was studied in [31] and
[32], which required no trusted authority which requires
every user to have attributes from at all the KDCs. Recently,
Lewko and Waters [35] proposed a fully decentralized ABE
where users could have zero or more attributes from each
authority and did not require a trusted server. In all these
cases, decryption at user’s end is computation intensive. So,
this technique might be inefficient when users access using
their mobile devices. To get over this problem, Green et al.
[33] proposed to outsource the decryption task to a proxy
server, so that the user can compute with minimum
resources (for example, hand held devices). However, the
presence of one proxy and one KDC makes it less robust
than decentralized approaches. Both these approaches had
no way to authenticate users, anonymously. Yang et al. [34]
presented a modification of [33], authenticate users, who
want to remain anonymous while accessing the cloud.

To ensure anonymous user authentication ABSs were
introduced by Maji et al. [23]. This was also a centralized
approach. A recent scheme by Maji et al. [24] takes a
decentralized approach and provides authentication without
disclosing the identity of the users. However, as mentioned
earlier in the previous section it is prone to replay attack.

3 BACKGROUND

In this section, we present our cloud storage model,
adversary model and the assumptions we have made in
the paper. Table 1 presents the notations used throughout
the paper. We also describe mathematical background used
in our proposed solution.

3.1 Assumptions

We make the following assumptions in our work:

1. The cloud is honest-but-curious, which means that
the cloud administrators can be interested in view-
ing user’s content, but cannot modify it. This is a
valid assumption that has been made in [12] and
[13]. Honest-but-curious model of adversaries do not
tamper with data so that they can keep the system
functioning normally and remain undetected.

2. Users can have either read or write or both accesses
to a file stored in the cloud.

3. All communications between users/clouds are se-
cured by secure shell protocol, SSH.

3.2 Formats of Access Policies

Access policies can be in any of the following formats:
1) Boolean functions of attributes, 2) linear secret sharing
scheme (LSSS) matrix, or 3) monotone span programs. Any
access structure can be converted into a Boolean function

386 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2014

[35]. An example of a Boolean function is ðða1 ^ a2 ^ a3Þ _
ða4 ^ a5ÞÞ ^ ða6 _ a7ÞÞ, where a1; a2; . . . ; a7 are attributes.

Let Y : f0; 1gn ! f0; 1g be a monotone Boolean function
[24]. A monotone span program for Y over a field IF is an
l� t matrix M with entries in IF, along with a labeling
function a : ½l� ! ½n� that associates each row of M with an
input variable of Y, such that, for every ðx1; x2 . . . ; xnÞ 2
f0; 1gn, the following condition is satisfied:

Yðx1; x2; . . . ; xnÞ ¼ 1, 9v 2 IF1�l : vM

¼ ½1; 0; 0; . . . ; 0� and ð8i : xaðiÞ

¼ 0) vi ¼ 0Þ:

In other words,Yðx1; x2; . . . ; xnÞ ¼ 1 if and only if the rows
of M indexed by fijxaðiÞ ¼ 1g span the vector ½1; 0; 0; . . . ; 0�.
Span programs can be constructed from Boolean functions in
a similar way as shown later in Section 5.

3.3 Mathematical Background

We will use bilinear pairings on elliptic curves. Let G be a
cyclic group of prime order q generated by g. Let GT be a
group of order q. We can define the map e : G�G! GT .
The map satisfies the following properties:

1. eðaP; bQÞ ¼ eðP;QÞab for all P;Q 2 G and a; b 2 ZZq,
ZZq ¼ f0; 1; 2; . . . ; q � 1g.

2. Nondegenerate: eðg; gÞ 6¼ 1.

Bilinear pairing on elliptic curves groups is used. We do

not discuss the pairing functions which mainly use Weil and

Tate pairings [36] and computed using Miller’s algorithm.

The choice of curve is an important consideration because it

determines the complexity of pairing operations.

3.4 Attribute-Based Encryption

ABE with multiple authorities as proposed by Lewko and
Waters [35] proceeds as follows [16]:

3.4.1 System Initialization

Select a prime q, generator g of G0, groups G0 and GT of
order q, a map e : G0 �G0 ! GT , and a hash function H :
f0; 1g� ! G0 that maps the identities of users to G0. The
hash function used here is SHA-1. Each KDC Aj 2 A has a
set of attributes Lj. The attributes disjoint (Li

T
Lj ¼ � for

i 6¼ j). Each KDC also chooses two random exponents
�i; yi 2 ZZq. The secret key of KDC Aj is

SK½j� ¼ f�i; yi; i 2 Ljg: ð1Þ

The public key of KDC Aj is published

PK½j� ¼ feðg; gÞ�i ; gyi ; i 2 Ljg: ð2Þ

3.4.2 Key Generation and Distribution by KDCs

User Uu receives a set of attributes I½j; u� from KDC Aj, and
corresponding secret key ski;u for each i 2 I½j; u�

ski;u ¼ g�iHðuÞyi ; ð3Þ

where �i; yi 2 SK½j�. Note that all keys are delivered to the
user securely using the user’s public key, such that only that
user can decrypt it using its secret key.

3.4.3 Encryption by Sender

The encryption function is ABE:EncryptðMSG;XÞ. Sender
decides about the access tree X . LSSS matrix R can be
derived as described in Section 3.2. Sender encrypts
message MSG as follows:

1. Choose a random seed s 2 ZZq and a random vector
v 2 ZZhq , with s as its first entry; h is the number of
leaves in the access tree (equal to the number of rows
in the corresponding matrix R).

2. Calculate �x ¼ Rx � v, where Rx is a row of R.
3. Choose a random vector w 2 ZZhq with 0 as the first

entry.
4. Calculate !x ¼ Rx � w.
5. For each row Rx of R, choose a random �x 2 ZZq.
6. The following parameters are calculated:

C0 ¼MSGeðg; gÞs;
C1;x ¼ eðg; gÞ�xeðg; gÞ��ðxÞ�x ; 8x;
C2;x ¼ g�x8x;
C3;x ¼ gy�ðxÞ�xg!x8x;

ð4Þ

where �ðxÞ is mapping from Rx to the attribute i that
is located at the corresponding leaf of the access tree.

7. The ciphertext C is sent by the sender (it also
includes the access tree via R matrix):

C ¼ hR; �; C0; fC1;x; C2;x; C3;x; 8xgi: ð5Þ

3.4.4 Decryption by Receiver

The decryption function is ABE:DecryptðC; fski;ugÞ, where
C is given by (5). Receiver Uu takes as input ciphertext C,
secret keys fski;ug, group G0, and outputs message msg. It

RUJ ET AL.: DECENTRALIZED ACCESS CONTROL WITH ANONYMOUS AUTHENTICATION OF DATA STORED IN CLOUDS 387

TABLE 1
Notations

obtains the access matrix R and mapping � from C. It then
executes the following steps:

1. Uu calculates the set of attributes f�ðxÞ : x 2 Xg
T
Iu

that are common to itself and the access matrix. X is
the set of rows of R.

2. For each of these attributes, it checks if there is a
subset X0 of rows of R, such that the vector
ð1; 0; . . . ; 0Þ is their linear combination. If not,
decryption is impossible. If yes, it calculates con-
stants cx 2 ZZq, such that

P
x2X0 cxRx ¼ ð1; 0; . . . ; 0Þ.

3. Decryption proceeds as follows:

a. For each x 2 X0, decðxÞ ¼ C1;xeðHðuÞ;C3;xÞ
eðsk�ðxÞ;u;C2;xÞ .

b. Uu computes MSG ¼ C0=�x2X0decðxÞ.

3.5 Attribute-Based Signature Scheme

ABS scheme [24] has the following steps.

3.5.1 System Initialization

Select a prime q, and groups G1 and G2, which are of order
q. We define the mapping ê : G1 �G1 ! G2. Let g1; g2 be
generators of G1 and hj be generators of G2, for j 2 ½tmax�,
for arbitrary tmax. Let H be a hash function. Let A0 ¼ ha0

0 ,
where a0 2 ZZ�q is chosen at random. ðTSig; TV erÞ mean
TSig is the private key with which a message is signed and
TV er is the public key used for verification. The secret key
for the trustee is TSK ¼ ða0; TSigÞ and public key is
TPK ¼ ðG1; G2;H; g1; A0; h0; h1; . . . ; htmax ; g2; TV erÞ.

3.5.2 User Registration

For a user with identity Uu the KDC draws at random
Kbase 2 G. Let K0 ¼ K1=a0

base . The following token � is output

� ¼ ðu;Kbase;K0; �Þ; ð6Þ

where � is signature on ukKbase using the signing key TSig.

3.5.3 KDC Setup

Choose a; b 2 ZZ�q randomly and compute: Aij ¼ haj , Bij ¼ hbj,
for Ai 2 AA, j 2 ½tmax�. The private key of ith KDC is
ASK½i� ¼ ða; bÞ and public keyAPK½i� ¼ ðAij; Bijjj 2 ½tmax�Þ.

3.5.4 Attribute Generation

The token verification algorithm verifies the signature
contained in � using the signature verification key TV er in
TPK. This algorithm extracts Kbase from � using ða; bÞ
from ASK½i� and computes Kx ¼ K1=ðaþbxÞ

base , x 2 J ½i; u�. The
key Kx can be checked for consistency using algorithm
ABS:KeyCheckðTPK;APK½i�; �;KxÞ, which checks

ê
�
Kx;AijB

x
ij

�
¼ êðKbase; hjÞ;

for all x 2 J½i; u� and j 2 ½tmax�.

3.5.5 Sign

The algorithm

ABS:SignðTPK; fAPK½i� : i 2 AT ½u�g;
�; fKx : x 2 Jug;MSG;YÞ;

has input the public key of the trustee, the secret key of the
signer, the message to be signed and the policy claim Y. The

policy claim is first converted into the span program
M 2 ZZl�tq , with rows labeled with attributes. Mx denotes
row x of M. Let �0 denote the mapping from rows to the
attributes. So, �0ðxÞ is the mapping from Mx to attribute x. A
vector v is computed that satisfies the assignment
fx : x 2 J ½i; u�g. Compute � ¼ HðMSGkYÞ. Choose r0 2 ZZ�q
and ri 2 ZZq; i 2 Ju, and compute:

Y ¼ Kr0

base; Si ¼
�
Kvi
i

�r0 :
�
g2g

�
1

�rið8i 2 JuÞ; ð7Þ

W ¼ Kr0

0 ; Pj ¼ �i2AT ½u�
�
AijB

�0ðiÞ
ij

�Mijrið8j 2 ½t�Þ: ð8Þ

The signature is calculated as

	 ¼ ðY ;W; S1; S2; . . . ; St; P1; P2; . . . ; PtÞ: ð9Þ

3.5.6 Verify

Algorithm

ABS:V erifyðTPK; 	 ¼ ðY ;W; S1; S2; . . . ; St;

P1; P2; . . . ; PtÞ;MSG;YÞ;

converts Y to the corresponding monotone program
M 2 ZZl�tq , with rows labeled with attributes. Compute � ¼
HðMSGkYÞ. If Y ¼ 1, ABS:V erify ¼ 0 meaning false.
Otherwise, the following constraints are checked

êðW;A0Þ ¼
?
êðY ; h0Þ; ð10Þ

�i2lê
�
Si; Ai0jB

�0ðiÞ
i0j

�Mij
�
¼? êðY ; h1Þê

�
g2g

�
1 ; P1

�
; j ¼ 1;

ê
�
g2g

�
1 ; Pj

�
; j > 1;

�
ð11Þ

where i0 ¼ AT ½i�.

4 PROPOSED PRIVACY PRESERVING

AUTHENTICATED ACCESS CONTROL SCHEME

In this section, we propose our privacy preserving
authenticated access control scheme. According to our
scheme a user can create a file and store it securely in the
cloud. This scheme consists of use of the two protocols ABE
and ABS, as discussed in Sections 3.4 and 3.5, respectively.
We will first discuss our scheme in details and then provide
a concrete example to demonstrate how it works. We refer
to the Fig. 1. There are three users, a creator, a reader, and
writer. Creator Alice receives a token � from the trustee,
who is assumed to be honest. A trustee can be someone like
the federal government who manages social insurance
numbers etc. On presenting her id (like health/social
insurance number), the trustee gives her a token �. There
are multiple KDCs (here 2), which can be scattered. For
example, these can be servers in different parts of the world.
A creator on presenting the token to one or more KDCs
receives keys for encryption/decryption and signing. In the
Fig. 1, SKs are secret keys given for decryption, Kx are keys
for signing. The message MSG is encrypted under the
access policy X . The access policy decides who can access
the data stored in the cloud. The creator decides on a claim
policy Y, to prove her authenticity and signs the message
under this claim. The ciphertext C with signature is c, and is
sent to the cloud. The cloud verifies the signature and stores

388 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2014

the ciphertext C. When a reader wants to read, the cloud

sends C. If the user has attributes matching with access

policy, it can decrypt and get back original message.
Write proceeds in the same way as file creation. By

designating the verification process to the cloud, it relieves

the individual users from time consuming verifications.

When a reader wants to read some data stored in the cloud,

it tries to decrypt it using the secret keys it receives from the

KDCs. If it has enough attributes matching with the access

policy, then it decrypts the information stored in the cloud.

4.1 Data Storage in Clouds

A user Uu first registers itself with one or more trustees. For

simplicity we assume there is one trustee. The trustee gives

it a token � ¼ ðu;Kbase;K0; �Þ, where � is the signature on

ukKbase signed with the trustees private key TSig (by (6)).

The KDCs are given keys PK½i�; SK½i� for encryption/

decryption and ASK½i�; APK½i� for signing/verifying. The

user on presenting this token obtains attributes and secret

keys from one or more KDCs. A key for an attribute x

belonging to KDC Ai is calculated as Kx ¼ K1=ðaþbxÞ
base , where

ða; bÞ 2 ASK½i�. The user also receives secret keys skx;u for

encrypting messages. The user then creates an access policy

X which is a monotone Boolean function. The message is

then encrypted under the access policy as

C ¼ ABE:EncryptðMSG;XÞ: ð12Þ

The user also constructs a claim policy Y to enable the cloud

to authenticate the user. The creator does not send the

message MSG as is, but uses the time stamp
 and creates

HðCÞk
 . This is done to prevent replay attacks. If the time

stamp is not sent, then the user can write previous stale

message back to the cloud with a valid signature, even

when its claim policy and attributes have been revoked. The

original work by Maji et al. [24] suffers from replay attacks.

In their scheme, a writer can send its message and correct

signature even when it no longer has access rights. In our

scheme a writer whose rights have been revoked cannot

create a new signature with new time stamp and, thus,

cannot write back stale information. It then signs the

message and calculates the message signature as

	 ¼ ABS:SignðPublic key of trustee; Public key of KDCs;

token; signing key; message; access claimÞ:

The following information is then sent in the cloud

c ¼ ðC;
; 	;YÞ: ð13Þ

The cloud on receiving the information verifies the
access claim using the algorithm ABS:verify. The creator
checks the value of V ¼ ABS:V erifyðTPK; 	; c;YÞ. If V ¼ 0,
then authentication has failed and the message is discarded.
Else, the message ðC;
Þ is stored in the cloud.

4.2 Reading from the Cloud

When a user requests data from the cloud, the cloud sends
the ciphertext C using SSH protocol. Decryption proceeds
using algorithm ABE:DecryptðC; fski;ugÞ and the message
MSG is calculated as given in Section 3.4.4.

4.3 Writing to the Cloud

To write to an already existing file, the user must send its
message with the claim policy as done during file creation.
The cloud verifies the claim policy, and only if the user is
authentic, is allowed to write on the file.

4.4 User Revocation

We have just discussed how to prevent replay attacks. We
will now discuss how to handle user revocation. It should
be ensured that users must not have the ability to access
data, even if they possess matching set of attributes. For this
reason, the owners should change the stored data and send
updated information to other users. The set of attributes Iu
possessed by the revoked user Uu is noted and all users
change their stored data that have attributes i 2 Iu. In [13],
revocation involved changing the public and secret keys of
the minimal set of attributes which are required to decrypt
the data. We do not consider this approach because here
different data are encrypted by the same set of attributes, so
such a minimal set of attributes is different for different
users. Therefore, this does not apply to our model. Once
the attributes Iu are identified, all data that possess the
attributes are collected. For each such data record, the
following steps are then carried out:

1. A new value of s, snew 2 ZZq is selected.
2. The first entry of vector vnew is changed to new snew.
3. �x ¼ Rxvnew is calculated, for each row x corre-

sponding to leaf attributes in Iu.
4. C1;x is recalculated for x.
5. New value ofC1;x is securely transmitted to the cloud.
6. New C0 ¼Meðg; gÞsnew is calculated and stored in the

cloud.
7. New value of C1;x is not stored with the data, but is

transmitted to users, who wish to decrypt the data.

We note here that the new value of C1;x is not stored in
the cloud but transmitted to the nonrevoked users who have
attribute corresponding to x. This prevents a revoked user to
decrypt the new value of C0 and get back the message.

5 REAL LIFE EXAMPLE

We now revisit the problem we stated in the introduction.
We will use a relaxed setting. Suppose Alice is a law
student and wants to send a series of reports about

RUJ ET AL.: DECENTRALIZED ACCESS CONTROL WITH ANONYMOUS AUTHENTICATION OF DATA STORED IN CLOUDS 389

Fig. 1. Our secure cloud storage model.

malpractices by authorities of University X to all the
professors of University X, Research chairs of universities
X;Y ; Z and students belonging to Law department in
university X. She wants to remain anonymous, while
publishing all evidence. All information is stored in the
cloud. It is important that users should not be able to know
her identity, but must trust that the information is from a
valid source. For this reason she also sends a claim message
which states that she “Is a law student” or “Is a student
counselor” or “Professor at university X.” The tree
corresponding to the claim policy is shown in Fig. 2.

The leaves of the tree consists of attributes and the
intermediary nodes consists of Boolean operators. In this
example the attributes are “Student,” “Prof,” “Dept Law,”
“Uni X,” “Counselor.” The above claim policy can be
written as a Boolean function of attributes as

((Student AND Dept Law) OR (Prof AND Uni X)) OR

(Student Counselor).

Boolean functions can also be represented by access tree,
with attributes at the leaves and ANDð^Þ and ORð_Þ as the
intermediate nodes and root. Boolean functions can be
converted to LSSS matrix as below: Let v½x� be parents
vector. If node x ¼ AND, then the left child is ðv½x�j1Þ, and
the right child is ð0; . . . ; 1Þ. If x ¼ OR, then both children
also have unchanged vector v½x�. Finally, pad with 0s in
front, such that all vectors are of equal length. The proof of
validity of the algorithm is given in [25]. We do not present
it here due to lack of space.

Using this algorithm, the span program for this policy is

M ¼

1 1
0 �1
1 1
0 �1
1 0

0
BBBB@

1
CCCCA:

An assignment v ¼ ðv1; v2; v3; v4; v5Þ satisfies this span

program if vM ¼ ð1; 0Þ.
The cloud should verify that Alice indeed satisfies this

claim. Since she is a law student, v ¼ ð1; 1; 0; 0; 0Þ and is a
valid assignment. As a valid user she can then store all the
encrypted records under the set of access policy that she has
decided. The access policy in case of Alice is

((Prof AND Uni. X) OR

(Research Chair AND ((Uni X OR Uni Y) OR Uni Z)) OR

((Student AND Dept Law)AND Uni X).

Later when a valid user, say Bob wants to modify any of
these reports he also attaches a set of claims which the cloud
verifies. For example, Bob is a research chair and might
send a claim “Research chair” or “Department head” which
is then verified by the cloud. It then sends the encrypted
data to the Bob. Since Bob is a valid user and has matching
attributes, he can decrypt and get back the information.

If Bob wants to read the contents without modifying
them, then there is no need to attach a claim. He will be able
to decrypt only if he is a Professor in University X or a
Research chair in one of the universities X;Y ; Z or a student
belonging to Department of Law in university X.

Here it is to be noted that the attributes can belong to
several KDCs. For example, the Professors belonging to
university X have credentials given by the university X,
and the Ph.D. degree from a University P, the student
counselor might be a psychologist authorized by the
Canadian Psychological Association and assigned an
employee number by a university, the research chairs
can be jointly appointed by the universities X, Y , Z and
the government. The students can have credentials from
the university and also a department.

Initially, Alice goes to a trustee, for example, the
Canadian health service and presents her a health insurance
number or federal agency presents her a social insurance
number. Either or both of these trustees can give her
token(s) � ¼ ðu;Kbase;K0; �Þ. With the token she approaches
the KDCs in the university X and department D and
obtains the secret keys for decryption and for keys Kx and
Ky for signing the assess policy. She can also access the
public keys APK½i� of other KDCs. The entire process is
carried on in the following way:

5.1 Data Storage in Clouds

Let the data be denoted by MSG, X is the access policy

((Prof AND Uni. X) OR

(Research Chair AND ((Uni X OR Uni Y) OR Uni Z)) OR

((Student AND Dept Law)AND Uni X).

Alice encrypts the data and obtains the ciphertext

C ¼ EncðMSG;XÞ:

Alice also decides on a claim policy Y which is shown in
Fig. 2. From the matrix, v ¼ ð1; 1; 0; 0; 0Þ can be calculated.
The values of Y ;W; S1; S2; S3; S4; S5; P1; P2 can be calcu-
lated. � ¼ HðMSGkYÞ. The current time stamp
 is attached
to the ciphertext to prevent replay attacks. The signature 	
is calculated as ABS:Sign. The ciphertext

c ¼ ðC;
; 	;YÞ:

is then send to the cloud. The cloud verifies the signature
using the function ABS:V erify as given in (11). If Alice has
valid credentials then the ciphertext ðC;
Þ is stored, else it
is discarded.

5.2 Reading from the Cloud and Modifying Data

Suppose Bob wants to access the records stored by Alice.
Bob then decrypts the message MSG using his secret keys
using function ABE:Decrypt. Writing proceeds like file
creation. It is to be noted that the time
 is added to the data
so that even if Bob’s credentials are revoked, he cannot
write stale data in the cloud.

390 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2014

Fig. 2. Example of claim policy.

6 SECURITY OF THE PROTOCOL

In this section, we will prove the security of the protocol.
We will show that our scheme authenticates a user who
wants to write to the cloud. A user can only write provided
the cloud is able to validate its access claim. An invalid user
cannot receive attributes from a KDC, if it does not have the
credentials from the trustee. If a user’s credentials are
revoked, then it cannot replace data with previous stale
data, thus preventing replay attacks.

Theorem 1. Our access control scheme is secure (no outsider or

cloud can decrypt ciphertexts), collusion resistant and allows
access only to authorized users.

Proof. We first show that no unauthorized user can access
data from the cloud. We will first prove the validity of
our scheme. A user can decrypt data if and only if it has a
matching set of attributes. This follows from the fact that
access structure S (and hence matrix R) is constructed if
and only if there exists a set of rows X0 in R, and linear
constants cx 2 ZZq, such that

P
x2X0 cxRx ¼ ð1; 0; . . . ; 0Þ. A

proof of this appear in [25, Chapter 4].
We note that

decðxÞ ¼ C1;xeðHðuÞ; C3;xÞ
eðsk�ðxÞ;u; C2;xÞ

¼ eðg; gÞ�xeðHðuÞ; gÞ!x : ð14Þ

Thus,

�x2X0decðxÞ
¼ �x2X0 ðeðg; gÞ�xeðHðuÞ; gÞ!xÞcx

¼ eðg; gÞs:
ð15Þ

Equation (15) above holds because �x ¼ Rx � v and
!x ¼ Rx � w, where v � ð1; 0; . . . ; 0Þ ¼ r and ! � ð1; 0; . . . ;
0Þ ¼ 0. C0=�x2X0decðxÞ ¼ C0=eðg; gÞs ¼M.

For an invalid user, there does not exists attributes
corresponding to rows x, such that

P
x2X0 cxRx ¼

ð1; 0; . . . ; 0Þ. Thus, eðg; gÞs cannot be calculated.
We next show that two or more users cannot collude

and gain access to data that they are not individually
supposed to access. Suppose that there exist attributes
�ðxÞ from the colluders, such that

P
x2X cxRx ¼

ð1; 0; . . . ; 0Þ. However, eðHðuÞ; gÞ!x needs to be calculated
according to (15). Since different users have different
values of eðHðuÞ; gÞ, even if they combine their attributes,
they cannot decrypt the message.

We next observe that the cloud cannot decode stored
data. This is because it does not posses the secret keys
ski;u (by (3)). Even if it colludes with other users, it
cannot decrypt data which the users cannot themselves
decrypt, because of the above reason (same as collusion
of users). The KDCs are located in different servers and
are not owned by the cloud. For this reason, even if some
(but not all) KDCs are compromised, the cloud cannot
decode data. tu

Theorem 2. Our authentication scheme is correct, collusion
secure, resistant to replay attacks, and protects privacy of
the user.

Proof. We first note that only valid users registered with the
trustee(s) receive attributes and keys from the KDCs. A

user’s token is � ¼ ðu;Kbase;K0; �Þ, where � is signature
on ukKbase with TSig belonging to the trustee. An invalid
user with a different user-id cannot create the same
signature because it does not know TSig.

We next show that only a valid user with valid
access claim is only able to store the message in the
cloud. This follows from the functions ABS:Sign and
ABS:V erify given in Section 3.5. A user who wants to
create a file and tries to make a false access claim,
cannot do so, because it will not have attribute keys Kx

from the related KDCs. At the same time since the
message is encrypted, a user without valid access
policy cannot decrypt and change the information.

Two users cannot collude and create an access policy
consisting of attributes shared between them. Suppose,
there are two users A and B who have attributes xA and
xB, respectively. They have the following information
KbaseA ;KxA and KbaseB ;KxB , respectively. A new value of
KxB ¼ K

1=ðaþbx0Þ
baseA

cannot be calculated by B, because it
does not know the values of ða; bÞ. Thus, the authentica-
tion is collusion secure.

Our scheme is resistant to replay attacks. If a writer’s
access claims are revoked, it cannot replace a data with
stale information from previous writes. This is because it
has to attach a new time stamp
 and sign the message
HðCÞk
 again. Since it does not have attributes, it cannot
have a valid signature. tu

The mathematical proofs of security of our scheme
follows from the security proofs of [23], [35] and has been
omitted for the lack of space.

7 COMPUTATION COMPLEXITY

In this section, we present the computation complexity of
the privacy preserving access control protocol. We will
calculate the computations required by users (creator,
reader, writer) and that by the cloud. Table 2 presents
notations used for different operations.

The creator needs to encrypt the message and sign it.
Creator needs to calculate one pairing eðg; gÞ. Encryption
takes two exponentiations to calculate each of C1;x. So this
requires 2mET time, where m is the number of attributes.
User needs to calculate three exponentiation to calculate C2;x

and C3;x. So time taken for encryption is ð3mþ 1ÞE0 þ
2mET þ
P . To sign the message, Y ;W; S0is and Pjs have to
be calculated as well as HðCÞ. So, time taken to sign is
ð2lþ 2ÞE1 þ 2tE2 þ
H.

The cloud needs to verify the signature. This requires
checking for (11). Time taken to verify is ðlþ 2tÞ
P̂ þ
lðE1 þE2Þ þ
H. To read, a user needs only to decrypt the

RUJ ET AL.: DECENTRALIZED ACCESS CONTROL WITH ANONYMOUS AUTHENTICATION OF DATA STORED IN CLOUDS 391

TABLE 2
Notations

ciphertext. This requires 2m pairings to calculate eðHðuÞ;
C3;xÞ and eðsk�ðxÞ;u; C2;xÞ and OðmhÞ to find the vector c.
Decryption takes 2m
P þ
H þOðmhÞ. Writing is similar to
creating a record. The size of ciphertext with signature is
2mjG0j þmjGT j þm2 þ jMSGj þ ðlþ tþ 2ÞjG1j.

When revocation is required, C0 needs to be recalculated.
eðg; gÞ is previously calculated. So, only one scalar multi-
plication is needed. If the user revoked is Uu, then for each
x, C1;x has to be recomputed. eðg; gÞ is already computed.
Thus, only two scalar multiplication needs to be done, for
each x. So a total of 2m0 þ 1 scalar multiplications are done
by the cloud, where m0 is the number of attributes
belonging to all revoked users. Users need not compute
any scalar multiplication or pairing operations. Additional
communication overhead is Oððm0 þ 1ÞjGT jÞ.

The curves chosen are either MNT curves (proposed by
Miyaji, Nakabayashi, and Takano) or supersingular curves.
Considering the requirements, elliptic curve group of size
159, with an embedding degree 6 (type d curves of pairing-
based cryptography (PBC) [36]) can be used. Pairing takes
14 ms on Intel Pentium D, 3.0-GHz CPU [16]. Such
operations are very suitable for a cloud computing
environment. A new library for ABE is also available at [37].

PBC library [36] is a C library which is built above
GNU GMP (GNU Math Precision) library and contains
functions to implement elliptic curves and pairing opera-
tions. Each element of G needs 512 bits at an 80-bit
security level and 1,536 bits when 128-bit of security are
chosen [39]. Each cryptographic operation was implemen-
ted using the PBC library ver. 0.4.18 on a 3.0-GHZ
processor PC. The public key parameters were selected
to provide 80-bit security level. According to [39],
implementation uses 160-bit elliptic curve group on the
supersingular curve y2 ¼ x3 þ x over a 512-bit finite field.
The computational cost for a pairing operation is 2.9 ms
and that of exponentiation on G (and G0) and GT (and G2)
are 1 and 0.2 ms, respectively.

We will compare our computation costs with existing
schemes like [12], [13], [15] in Section 8.

8 COMPARISON WITH OTHER ACCESS CONTROL

SCHEMES IN CLOUD

We compare our scheme with other access control schemes
(in Table 3) and show that our scheme supports many

392 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2014

TABLE 3
Comparison of Our Scheme with Existing Access Control Schemes

TABLE 4
Comparison of Computation and Size of Ciphertext While Creating a File

TABLE 5
Comparison of Computation during Read and Write by User and Cloud

features that the other schemes did not support. 1-W-M-R
means that only one user can write while many users can
read. M-W-M-R means that many users can write and read.
We see that most schemes do not support many writes
which is supported by our scheme. Our scheme is robust
and decentralized, most of the others are centralized. Our
scheme also supports privacy preserving authentication,
which is not supported by others. Most of the schemes do
not support user revocation, which our scheme does. In
Tables 4 and 5, we compare the computation and commu-
nication costs incurred by the users and clouds and show
that our distributed approach has comparable costs to
centralized approaches. The most expensive operations
involving pairings and is done by the cloud. If we compare
the computation load of user during read we see that our
scheme has comparable costs. Our scheme also compares
well with the other authenticated scheme of [15].

9 CONCLUSION

We have presented a decentralized access control technique

with anonymous authentication, which provides user

revocation and prevents replay attacks. The cloud does
not know the identity of the user who stores information,

but only verifies the user’s credentials. Key distribution is

done in a decentralized way. One limitation is that the

cloud knows the access policy for each record stored in the

cloud. In future, we would like to hide the attributes and
access policy of a user.

ACKNOWLEDGMENTS

This work is partially supported by NSERC Grant

CRDPJ386874-09 and the grant: “Digital signal processing,

and the synthesis of an information security system,”

TR32054, Serbian Ministry of Science and Education.

REFERENCES

[1] S. Ruj, M. Stojmenovic, and A. Nayak, “Privacy Preserving Access
Control with Authentication for Securing Data in Clouds,” Proc.
IEEE/ACM Int’l Symp. Cluster, Cloud and Grid Computing, pp. 556-
563, 2012.

[2] C. Wang, Q. Wang, K. Ren, N. Cao, and W. Lou, “Toward
Secure and Dependable Storage Services in Cloud Computing,”
IEEE Trans. Services Computing, vol. 5, no. 2, pp. 220-232, Apr.-
June 2012.

[3] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, “Fuzzy
Keyword Search Over Encrypted Data in Cloud Computing,”
Proc. IEEE INFOCOM, pp. 441-445, 2010.

[4] S. Kamara and K. Lauter, “Cryptographic Cloud Storage,” Proc.
14th Int’l Conf. Financial Cryptography and Data Security, pp. 136-
149, 2010.

[5] H. Li, Y. Dai, L. Tian, and H. Yang, “Identity-Based Authentica-
tion for Cloud Computing,” Proc. First Int’l Conf. Cloud Computing
(CloudCom), pp. 157-166, 2009.

[6] C. Gentry, “A Fully Homomorphic Encryption Scheme,” PhD
dissertation, Stanford Univ., http://www.crypto.stanford.edu/
craig, 2009.

[7] A.-R. Sadeghi, T. Schneider, and M. Winandy, “Token-Based
Cloud Computing,” Proc. Third Int’l Conf. Trust and Trustworthy
Computing (TRUST), pp. 417-429, 2010.

[8] R.K.L. Ko, P. Jagadpramana, M. Mowbray, S. Pearson, M.
Kirchberg, Q. Liang, and B.S. Lee, “Trustcloud: A Framework
for Accountability and Trust in Cloud Computing,” HP Technical
Report HPL-2011-38, http://www.hpl.hp.com/techreports/
2011/HPL-2011-38.html, 2013.

[9] R. Lu, X. Lin, X. Liang, and X. Shen, “Secure Provenance: The
Essential of Bread and Butter of Data Forensics in Cloud
Computing,” Proc. Fifth ACM Symp. Information, Computer and
Comm. Security (ASIACCS), pp. 282-292, 2010.

[10] D.F. Ferraiolo and D.R. Kuhn, “Role-Based Access Controls,” Proc.
15th Nat’l Computer Security Conf., 1992.

[11] D.R. Kuhn, E.J. Coyne, and T.R. Weil, “Adding Attributes to Role-
Based Access Control,” IEEE Computer, vol. 43, no. 6, pp. 79-81,
June 2010.

[12] M. Li, S. Yu, K. Ren, and W. Lou, “Securing Personal Health
Records in Cloud Computing: Patient-Centric and Fine-Grained
Data Access Control in Multi-Owner Settings,” Proc. Sixth Int’l
ICST Conf. Security and Privacy in Comm. Networks (SecureComm),
pp. 89-106, 2010.

[13] S. Yu, C. Wang, K. Ren, and W. Lou, “Attribute Based Data
Sharing with Attribute Revocation,” Proc. ACM Symp. Information,
Computer and Comm. Security (ASIACCS), pp. 261-270, 2010.

[14] G. Wang, Q. Liu, and J. Wu, “Hierarchical Attribute-Based
Encryption for Fine-Grained Access Control in Cloud Storage
Services,” Proc. 17th ACM Conf. Computer and Comm. Security
(CCS), pp. 735-737, 2010.

[15] F. Zhao, T. Nishide, and K. Sakurai, “Realizing Fine-Grained and
Flexible Access Control to Outsourced Data with Attribute-Based
Cryptosystems,” Proc. Seventh Int’l Conf. Information Security
Practice and Experience (ISPEC), pp. 83-97, 2011.

[16] S. Ruj, A. Nayak, and I. Stojmenovic, “DACC: Distributed Access
Control in Clouds,” Proc. IEEE 10th Int’l Conf. Trust, Security and
Privacy in Computing and Communications (TrustCom), 2011.

[17] http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-
01-en.pdf, 2013.

[18] http://securesoftwaredev.com/2012/08/20/xacml-in-the-cloud,
2013.

[19] S. Jahid, P. Mittal, and N. Borisov, “EASiER: Encryption-Based
Access Control in Social Networks with Efficient Revocation,”
Proc. ACM Symp. Information, Computer and Comm. Security
(ASIACCS), 2011.

[20] R.L. Rivest, A. Shamir, and Y. Tauman, “How to Leak a Secret,”
Proc. Seventh Int’l Conf. Theory and Application of Cryptology and
Information Security (ASIACRYPT), pp. 552-565, 2001.

[21] X. Boyen, “Mesh Signatures,” Proc. 26th Ann. Int’l Conf. Advances
in Cryptology (EUROCRYPT), pp. 210-227, 2007.

[22] D. Chaum and E.V. Heyst, “Group Signatures,” Proc. Ann. Int’l
Conf. Advances in Cryptology (EUROCRYPT), pp. 257-265, 1991.

[23] H.K. Maji, M. Prabhakaran, and M. Rosulek, “Attribute-Based
Signatures: Achieving Attribute-Privacy and Collusion-Resis-
tance,” IACR Cryptology ePrint Archive, 2008.

[24] H.K. Maji, M. Prabhakaran, and M. Rosulek, “Attribute-Based
Signatures,” Topics in Cryptology - CT-RSA, vol. 6558, pp. 376-392,
2011.

[25] A. Beimel, “Secure Schemes for Secret Sharing and Key Distribu-
tion,” PhD thesis, Technion, Haifa, 1996.

[26] A. Sahai and B. Waters, “Fuzzy Identity-Based Encryption,” Proc.
Ann. Int’l Conf. Advances in Cryptology (EUROCRYPT), pp. 457-473,
2005.

[27] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-Based
Encryption for Fine-Grained Access Control of Encrypted Data,”
Proc. ACM Conf. Computer and Comm. Security, pp. 89-98, 2006.

[28] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-Policy
Attribute-Based Encryption,” Proc. IEEE Symp. Security and
Privacy, pp. 321-334, 2007.

[29] X. Liang, Z. Cao, H. Lin, and D. Xing, “Provably Secure and
Efficient Bounded Ciphertext Policy Attribute Based Encryption,”
Proc. ACM Symp. Information, Computer and Comm. Security
(ASIACCS), pp 343-352, 2009.

[30] M. Chase, “Multi-Authority Attribute Based Encryption,” Proc.
Fourth Conf. Theory of Cryptography (TCC), pp. 515-534, 2007.

[31] H. Lin, Z. Cao, X. Liang, and J. Shao, “Secure Threshold Multi-
Authority Attribute Based Encryption without a Central Author-
ity,” Proc. Progress in Cryptology Conf. (INDOCRYPT), pp. 426-436,
2008.

[32] M. Chase and S.S.M. Chow, “Improving Privacy and Security in
Multi-Authority Attribute-Based Encryption,” Proc. ACM Conf.
Computer and Comm. Security, pp. 121-130, 2009.

[33] M. Green, S. Hohenberger, and B. Waters, “Outsourcing the
Decryption of ABE Ciphertexts,” Proc. USENIX Security Symp.,
2011.

RUJ ET AL.: DECENTRALIZED ACCESS CONTROL WITH ANONYMOUS AUTHENTICATION OF DATA STORED IN CLOUDS 393

[34] K. Yang, X. Jia, and K. Ren, “DAC-MACS: Effective Data Access
Control for Multi-Authority Cloud Storage Systems,” IACR
Cryptology ePrint Archive, p. 419, 2012.

[35] A.B. Lewko and B. Waters, “Decentralizing Attribute-Based
Encryption,” Proc. Ann. Int’l Conf. Advances in Cryptology (EURO-
CRYPT), pp. 568-588, 2011.

[36] http://crypto.stanford.edu/pbc/, 2013.
[37] “Libfenc: The Functional Encryption Library,”http://code.

google.com/p/libfenc/, 2013.
[38] W. Wang, Z. Li, R. Owens, and B. Bhargava, “Secure and Efficient

Access to Outsourced Data,” Proc. ACM Cloud Computing Security
Workshop (CCSW), 2009.

[39] J. Hur and D. Kun Noh, “Attribute-Based Access Control with
Efficient Revocation in Data Outsourcing Systems,” IEEE Trans.
Parallel and Distributed Systems, vol. 22, no. 7, pp. 1214-1221, July
2011.

Sushmita Ruj received the BE degree in
computer science from Bengal Engineering
and Science University, Shibpur, India in 2004,
and the Masters and PhD degrees in computer
science from Indian Statistical Institute, India in
2006 and 2010, respectively. Between 2009 and
2010, she was a Erasmus Mundus Post Doctoral
Fellow at Lund University, Sweden and between
2010-2012, she was a Post Doctoral Fellow at
University of Ottawa, Canada. She was an

Assistant professor at Indian Institute of Technology, IIT, Indore
between 2012-2013 and is currently an Assistant professor at Indian
Statistical Institute, Kolkata, India. Her research interests are in security
in mobile ad hoc networks, vehicular networks, cloud security,
combinatorics and cryptography. She is on the Editorial Board of Ad
Hoc and Sensor Wireless Networks. Sushmita has served as Program
Co-Chair for ICDCS workshop, NFSP’2013, ICC WorkshopSecure
Networking and Forensic Computing (SNFC) and has served as TPC
member for many conferences like Indocrypt, IEEE Globecom, IEEE
ICC, IEEE MASS, IEEE PIMRC, ICDCN and many others. She won best
paper awards at ISPA 2007 and IEEE PIMRC 2011. She is a member of
the IEEE.

Milos Stojmenovic received the bachelor of
computer science degree at the School of
Information Technology and Engineering, Uni-
versity of Ottawa, ON, Canada, in 2003, the
master’s degree in computer science at Carleton
University in Ottawa, Canada, in 2005, and the
PhD degree in the same field at the University of
Ottawa, Canada, in 2008. Currently, he is an
assistant professor at the Singidunum Univer-
sity, Serbia. He was a visiting researcher at

Japans National Institute of Advanced Industrial Science and Technol-
ogy in 2009. He published more than 30 articles in the fields of computer
vision, image processing, and wireless networks. His work implements
machine learning techniques such as AdaBoost and SVM classification
which in turn use higher order autocorrelation features to perform image
segmentation and classification. He is a member of the IEEE.

Amiya Nayak received the BMath degree in
computer science and combinatorics and opti-
mization from the University of Waterloo, ON,
Canada, in 1981, and the PhD degree in
systems and computer engineering from Carle-
ton University, Ottawa, Canada, in 1991. He has
more than 17 years of industrial experience in
software engineering, avionics and navigation
systems, simulation and system level perfor-
mance analysis. He is in the Editorial Board of

several journals, including IEEE Transactions on Parallel and Distributed
Systems, International Journal of Parallel, Emergent and Distributed
Systems, International Journal of Computers and Applications, and
EURASIP Journal of Wireless Communications and Networking.
Currently, he is a full professor at the School of Electrical Engineering
and Computer Science at the University of Ottawa. His research
interests include the area of fault tolerance, distributed systems/
algorithms, and mobile ad hoc networks with more than 150 publications
in refereed journals and conference proceedings. He is a senior member
of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

394 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2014

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

