
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 116 (2017) 629–637

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 2nd International Conference on Computer Science and
Computational Intelligence 2017.
10.1016/j.procs.2017.10.029

10.1016/j.procs.2017.10.029

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 2nd International Conference on Computer Science and
Computational Intelligence 2017.

1877-0509

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 00 (2017) 000–000
www.elsevier.com/locate/procedia

1877-0509© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 2nd International Conference on Computer Science and
Computational Intelligence 2017.

2nd International Conference on Computer Science and Computational Intelligence 2017, ICCSCI
2017, 13-14 October 2017, Bali, Indonesia

Automated Test Case Generation from UML Activity Diagram and
Sequence Diagram using Depth First Search Algorithm

abMeiliana*, aIrwandhi Septian, aRicky Setiawan Alianto, aDaniel, bFord Lumban Gaol
aComputer Science Department, School of Computer Science - Bina Nusantara University, Jl. K. H. Syahdan No. 9, DKI Jakarta, 11480,

Indonesia
bDoctor of Computer Science – Bina Nusantara University, Jl. Kebon Jeruk Raya No.27, DKI Jakarta, 11530, Indonesia

Abstract

Software testing is an important and critical activity in software development that deals with software quality. However, the
testing process is consuming activities that need to be automated to save a lot of resources. Towards automated testing,
automating test cases generation as the first testing process is being highlighted. This research aims to generate test case
automatically from UML diagram since model based testing that conducted on early phase of software development process
show higher efficiency. UML diagrams used in this research are activity diagram, sequence diagram and SYTG as the
combination graph. These three diagrams have been proved as the most compatible diagram to generate test case from previous
research. Method proposed in this paper is Depth First Search algorithm that is modified to generate expected test cases. This
paper proves that modified DFS algorithm applied to generate test case is provide accurate result, every node presented on the
test case, include any condition (alt and opt). Comparison result from three different test cases generated shows that test cases
from combined UML may not necessarily result in better test cases, due to the possibility of redundant test cases for some test
cases. This paper also presenting an experiment result that proving sequence diagrams can produce better test cases.

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 2nd International Conference on Computer Science and
Computational Intelligence 2017.

Keywords: test cases, depth first search algorithm, UML diagram, software testing, test cases generator

* Corresponding author. Tel.: +6221-534-5830 ext. 2188.
E-mail address: meiliana@binus.edu

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 00 (2017) 000–000
www.elsevier.com/locate/procedia

1877-0509© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 2nd International Conference on Computer Science and
Computational Intelligence 2017.

2nd International Conference on Computer Science and Computational Intelligence 2017, ICCSCI
2017, 13-14 October 2017, Bali, Indonesia

Automated Test Case Generation from UML Activity Diagram and
Sequence Diagram using Depth First Search Algorithm

abMeiliana*, aIrwandhi Septian, aRicky Setiawan Alianto, aDaniel, bFord Lumban Gaol
aComputer Science Department, School of Computer Science - Bina Nusantara University, Jl. K. H. Syahdan No. 9, DKI Jakarta, 11480,

Indonesia
bDoctor of Computer Science – Bina Nusantara University, Jl. Kebon Jeruk Raya No.27, DKI Jakarta, 11530, Indonesia

Abstract

Software testing is an important and critical activity in software development that deals with software quality. However, the
testing process is consuming activities that need to be automated to save a lot of resources. Towards automated testing,
automating test cases generation as the first testing process is being highlighted. This research aims to generate test case
automatically from UML diagram since model based testing that conducted on early phase of software development process
show higher efficiency. UML diagrams used in this research are activity diagram, sequence diagram and SYTG as the
combination graph. These three diagrams have been proved as the most compatible diagram to generate test case from previous
research. Method proposed in this paper is Depth First Search algorithm that is modified to generate expected test cases. This
paper proves that modified DFS algorithm applied to generate test case is provide accurate result, every node presented on the
test case, include any condition (alt and opt). Comparison result from three different test cases generated shows that test cases
from combined UML may not necessarily result in better test cases, due to the possibility of redundant test cases for some test
cases. This paper also presenting an experiment result that proving sequence diagrams can produce better test cases.

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 2nd International Conference on Computer Science and
Computational Intelligence 2017.

Keywords: test cases, depth first search algorithm, UML diagram, software testing, test cases generator

* Corresponding author. Tel.: +6221-534-5830 ext. 2188.
E-mail address: meiliana@binus.edu

630	 Meiliana et al. / Procedia Computer Science 116 (2017) 629–6372 Meiliana/ Procedia Computer Science 00 (2017) 000–000

[Ketik di sini]

1. Introduction

Software testing is an important and critical phase that deals with software quality. However, software testing that
consists of three phases (test case generation, test execution and test evaluation) 1 is time consuming activity that
requires a lot of resource. Therefore, automated testing is strived to save resource spent in the terms of time, cost and
effort and to give more accurate result than manual testing that vulnerable to human error. Towards automated
testing, automating test cases generation as the first testing process is being highlighted.

Test cases can be generated automatically from source code or visual software model such as Unified Modeling
Language (UML), Data Flow Diagram (DFD), or Entity Relationship Diagram (ERD). Research example about code
based testing conducted by Srivastaval, et al. used genetic algorithm to optimize test case generation by applying
conditional coverage on source code 2. Another research from Alazzam et al. used information retrieval techniques
for the automatic extraction of source code concepts for the purpose of test case reduction 3. Compare to code based
testing, model based testing where test cases are generated from model of the software showed higher efficiency of
time and effort. Furthermore, generating test cases in the early phase of software development life cycle provide
control management on construction and testing phase. Thus, this research will focus on generating test cases from
several UML diagrams that are widely used on software modeling process.

Some previous researches have conducted test cases generation from UML diagrams. However, various methods
used and different case provided by previous researchers lead to unclear comparison and evaluation about this field.
This research provides one scenario case in different UML diagrams to be used in test cases generation process. As a
preliminary work, two UML behavior diagrams which are activity diagram and sequence diagram will be used. An
activity diagram can figure the sequential flow of activities of a use-case or business process from the start to the end
activity and it can also be used to model logic with system. On the other hand, a sequence diagram can show more
detail process about how processes interact with one another and the order of the interaction and indicate the life
spans of objects relative to those messages. One additional graph as combination from activity and sequence diagram
is formed and used as well for test cases generation in this research.

Modified DFS algorithm is proposed in this research as an enhancement of research from Tripathy et al.4. In our
experiment, current DFS algorithm that applied for test case generation process generated some redundant node.
Thus, a modification is needed to get optimal test cases result. Comparison test cases result for both aforementioned
algorithms is provided in the fifth section. The second section will discuss about state of the art of this field.
Subsequent section describes our proposed approach in generating test case automatically. Conclusions are given in
the last section. This paper aims to provide better evaluation and comparison of test case generated from different
UML diagrams with new proposed method; which is modified Deep First Search (DFS) algorithm.

2. State of The Art

Test cases are defined as a set of condition or variables which determine the level of correctness and quality of the
product. Simple way to present test case is by providing test path to be followed when conducting a testing. The
studied literature shows there are various methods described by numerous researchers for generating test cases and
comparing test case from different UML diagrams. We have classified the literature according to different aspects of
testing from UML design using different UML diagrams.

A.V.K. Shanthi and G. MohanKumar 1 presented an approach to automated generate test path using TABU search
algorithm. In this paper, the activity diagram generated from software design, and then all possible information
extracting using write parser in java. Based on the extracted information, an Activity Dependency Table (ADT) is
generated. Test case is generated with the help of ADT by applying TABU search algorithm. This experiment show
that this method has better performance. All possible test cases are generated and validated by prioritization. This
approach can reveal all paths for software to be developed and also obtained test cases valid once. Similarly, some
approaches 5–9 also used single diagram to generate test cases.

	 Meiliana et al. / Procedia Computer Science 116 (2017) 629–637� 631
 Author name / Procedia Computer Science 00 (2017) 000–000 3

Syed Asad Ali Shah, Raja Khaim Shahzad, Syed Shafique Ali Bukhari and Mamoona Humayun 10 presented
automated test case generation using UML class and sequence diagram. UML class and sequence is being converted
into XML format using Visual Paradigm. C# code is used to read XML file. This experiment only simple tool that ca
generate automated test cases using class and sequence diagram without any intermediate form.

Namita Khurana, R.S Chillar 11 in this approach, state chart diagram being converted to State Chart graph and
sequence diagram being converted to sequence graph. State chart graph and sequence graph is being converted into a
graph called System Testing Graph (SYTG). Genetic algorithm is being applied to generate and optimize the test
case based on their criteria. But, in this approach is used UML diagram state chart and sequence diagram and not
clearly mentioned the comparison of the result.

Our related work is automated test case from UML diagram and comparing the difference in results - Abinash
Triparthy and Anirban Mitra4 presented an approach to generate test case from UML activity diagram and sequence
diagram. In this paper, the activity diagram is being converted into activity graph and the sequence diagram is being
converted into sequence graph, and then the combined graphs are integrated to from System Testing Graph (SYTG),
and SYTG being traversed to form the test cases by using Depth First Search (DFS) method. But in this approach,
uses a SYTG algorithm that combines activity graph with a sequence of graphs that is by checking each node has
more than one branch or not, when branches are more than one then the first node of the sequence node included
could be the branching is not suitable. Therefore, in this experiment DFS algorithm will be being modified
eventually the results will be compared.

3. Proposed Approach

In our proposed approach, activity diagram (AD) will be converted into activity diagram graph (ADG) and
sequence diagram (SD) to sequence diagram graph (SDG). After that we present the modified DFS to generate the
test case from each graph, the test case from each graph is generated. On the next step, a graph called System
Testing Graph (SYTG) is formed by combine the activity diagram graph and sequence diagram graph. The
necessary information to form the test cases is pre stored into this graph. Then we generate the testing base on that
System Testing Graph. The modified DFS works by first traversed the graph to find every last node in the graph,
than stored those node in stack for last node. After that the graph is traversed again from the start to every last node
that is listed in stack that store last node, every time the algorithm find the node that have more than one branch, that
node is stored in stack for multiple branch. When we find the last node than the current path is stored in stack for
path and change the current path to next path until every last node is visited, for detail information can be seen
below.

3.1. Conversion of AD into ADG

In this sub section, we first define the activity diagram. After that we present the technique to transform the
activity diagram to activity diagram graph. An activity diagram figures the sequential flow of activities of a use-case
or business process and it can also be used to model logic with system.

We form the graph by getting the information from activity diagram to form the node contain id, activity name,
activity target, activity status. ID is a unique number used to identify each activity, activity name is the name of each
activity, activity target is the next activity that we would use to make adjacency list, and the activity status is the
status after pass the decision component.

3.2. Conversion of SD into SDG

In this section, we first define the sequence diagram. After that we present the technique to transform sequence
diagram to sequence diagram graph. A sequence diagram figures how objects communicate with each other in terms
of a sequence of messages within a system.

We form the graph by getting the information from sequence diagram to form the node contain id, message
name, message target, message number, operand status. ID is a unique number used to identify each message,
message name is the name of each message, message target is the next message that we would use to make

632	 Meiliana et al. / Procedia Computer Science 116 (2017) 629–6374 Meiliana/ Procedia Computer Science 00 (2017) 000–000

[Ketik di sini]

adjacency list, message number is the sequence number of each message that we would use to reorder every
message, and the operand status is the status of what alternative the message in.

3.3. Form the System Testing Graph (SYTG)

After we form the activity diagram graph and sequence diagram graph, the next step is to form the System
Testing Graph (SYTG) by combine the activity diagram graph and sequence diagram graph.

Fig. 1. Activity diagram

 Author name / Procedia Computer Science 00 (2017) 000–000 5

Fig. 2. Sequence diagram

algorithm SYTG is
 input: Graph activity and sequence
 output: List of combined graphs (LN)

 LN ← activity_graph
 foreach key, value in LN:
 if LN[key].adjacency_list length > 1 and LN[key].status = "To Sequence"
 curr_adj ← value.adjacency_list
 first_SDG ← SDG first key
 LN[key] ← first_SDG
 exit
 foreach key, value in SDG:
 LN[key] ← value
 foreach key, value in LN:
 if value.adjacency_list length = 0
 if value.status is not null and value.status = true
 add curr_adj[1] to LN[key].adjacency_list
 elseif value.status is not null and value.status = false
 add curr_adj[0] to LN[key].adjacency_list
 return LN

3.4. Generation test cases

After we form the activity diagram graph, sequence diagram graph and system testing graph, the next step is to
generate the test cases. We will generate the test case for each graph.

algorithm DFS_Get_Last_Node is
 input: Activity, sequence and SYTG graph

	 Meiliana et al. / Procedia Computer Science 116 (2017) 629–637� 633
 Author name / Procedia Computer Science 00 (2017) 000–000 5

Fig. 2. Sequence diagram

algorithm SYTG is
 input: Graph activity and sequence
 output: List of combined graphs (LN)

 LN ← activity_graph
 foreach key, value in LN:
 if LN[key].adjacency_list length > 1 and LN[key].status = "To Sequence"
 curr_adj ← value.adjacency_list
 first_SDG ← SDG first key
 LN[key] ← first_SDG
 exit
 foreach key, value in SDG:
 LN[key] ← value
 foreach key, value in LN:
 if value.adjacency_list length = 0
 if value.status is not null and value.status = true
 add curr_adj[1] to LN[key].adjacency_list
 elseif value.status is not null and value.status = false
 add curr_adj[0] to LN[key].adjacency_list
 return LN

3.4. Generation test cases

After we form the activity diagram graph, sequence diagram graph and system testing graph, the next step is to
generate the test cases. We will generate the test case for each graph.

algorithm DFS_Get_Last_Node is
 input: Activity, sequence and SYTG graph

634	 Meiliana et al. / Procedia Computer Science 116 (2017) 629–637
6 Meiliana/ Procedia Computer Science 00 (2017) 000–000

[Ketik di sini]

 output: List of last node in graph
 function DFSUtil(node, stack, visited, last_node):
 if visited[node] = 0 and stack length ≠ 0
 visited[node] ← 1
 pop stack
 foreach key, value in Graph[node].adjacency_list:
 if visited[value] = 0
 add value to stack
 else
 add node to last_node
 if Graph[node].adjacency_list length = 0
 add node to last_node
 if stack length ≠ 0
 last_stack ← end stack
 DFSUtil(last_stack, stack, visited, last_node)
 node ← start_node
 stack ← array
 visited ← array
 last_node ← array
 foreach key, value in Graph
 visited[key] ← 0
 add node to stack
 DFSUtil(node, stack, visited, last_node)
 return last_node

algorithm DFS_Mod is
 input: Activity, sequence and SYTG graph
 output: Print of path

 function GetFlowNode(last_node, stack, flow_stack, visited)
 foreach key, value in flow_stack
 print Graph[value].no
 if value ≠ end flow_stack
 print " => "
 first_node ← flow_stack[0]
 length_of_flow ← flow_stack length
 i ← length_of_flow
 while length_of_flow ≠ 0:
 temp_adj = Graph[flow_stack[i]].adjacency_list
 if temp_adj > 1
 foreach value in temp_adj:
 if visited[value] = 0
 j ← i
 while j ≠ 0:
 visited[flow_stack[j]] ← 0
 j ← j - 1
 flow_stack ← array
 DFSUtil(first_node,last_node,stack, flow_stack, visited)
 i ← i - 1

 function DFSUtil(node, last_node, stack, flow_stack, visited):
 if visited[node] = 0 and stack length ≠ 0
 visited[node] ← 1
 pop stack
 add node to flow_stack
 if node exists in last_node
 GetFlowNode(last_node, stack, flow_stack, visited)
 foreach key, value in Graph[node].adjacency_list:
 if visited[value] = 0
 add value to stack
 if stack length ≠ 0
 last_stack ← end stack

	 Meiliana et al. / Procedia Computer Science 116 (2017) 629–637� 635
6 Meiliana/ Procedia Computer Science 00 (2017) 000–000

[Ketik di sini]

 output: List of last node in graph
 function DFSUtil(node, stack, visited, last_node):
 if visited[node] = 0 and stack length ≠ 0
 visited[node] ← 1
 pop stack
 foreach key, value in Graph[node].adjacency_list:
 if visited[value] = 0
 add value to stack
 else
 add node to last_node
 if Graph[node].adjacency_list length = 0
 add node to last_node
 if stack length ≠ 0
 last_stack ← end stack
 DFSUtil(last_stack, stack, visited, last_node)
 node ← start_node
 stack ← array
 visited ← array
 last_node ← array
 foreach key, value in Graph
 visited[key] ← 0
 add node to stack
 DFSUtil(node, stack, visited, last_node)
 return last_node

algorithm DFS_Mod is
 input: Activity, sequence and SYTG graph
 output: Print of path

 function GetFlowNode(last_node, stack, flow_stack, visited)
 foreach key, value in flow_stack
 print Graph[value].no
 if value ≠ end flow_stack
 print " => "
 first_node ← flow_stack[0]
 length_of_flow ← flow_stack length
 i ← length_of_flow
 while length_of_flow ≠ 0:
 temp_adj = Graph[flow_stack[i]].adjacency_list
 if temp_adj > 1
 foreach value in temp_adj:
 if visited[value] = 0
 j ← i
 while j ≠ 0:
 visited[flow_stack[j]] ← 0
 j ← j - 1
 flow_stack ← array
 DFSUtil(first_node,last_node,stack, flow_stack, visited)
 i ← i - 1

 function DFSUtil(node, last_node, stack, flow_stack, visited):
 if visited[node] = 0 and stack length ≠ 0
 visited[node] ← 1
 pop stack
 add node to flow_stack
 if node exists in last_node
 GetFlowNode(last_node, stack, flow_stack, visited)
 foreach key, value in Graph[node].adjacency_list:
 if visited[value] = 0
 add value to stack
 if stack length ≠ 0
 last_stack ← end stack

 Author name / Procedia Computer Science 00 (2017) 000–000 7

 DFSUtil(last_stack, last_node, stack, flow_stack, visited)
 node = start
 stack = array
 flow_stack = array
 visited = array
 foreach key, value in Graph
 visited[key] ← 0
 last_node ← DFS_Get_Last_Node
 add node to stack

 DFSUtil(node, last_node, stack, flow_stack, visited)

4. Case Study

This section provides an experiment result of test case generation from activity graph, sequence graph, and
SYTQ from one example case which is login case (fig 1. And fig 2.). Test cases provided in a simple path flow to
give simple description of our algorithm implementation and better test cases comparison between graphs.
Comparison result between DFS algorithm and the modification clearly show that DFS algorithm will combine all
nodes in graph into one test case despite of any branch exist on the graph. A branch should leads to a new test case
generation possibility in testing process. DFS algorithm is modified and generates appropriate test cases as show
below.

Fig. 3. Activity graph Fig. 4. Sequence graph

4.1. Activity Graph
Test cases result from DFS algorithm:

A1 => A2 => A3 => A4 => A6 => A7 => A8 => A5
Detail: Start => Open login page => Display login page => Enter username and password => User has
successfully login => Display home page => Finish => Invalid username and password.

Test cases result from modified DFS algorithm:
a. Success case:

A1 => A2 => A3 => A4 => A6 => A7 => A8.
Detail: Start => Open login page => Display login page => Enter username and password => User has
successfully login => Display home page => Finish.

b. Failed case:
A1 => A2 => A3 => A4 => A5.
Detail: Start => Open login page => Display login page => Enter username and password => Invalid
username and password.

This diagram represents the flow of user’s activity from the beginning to the end, but the generated test cases can
only show the general outline in a system. These test cases used common words which make this easier to read and
understand what the system will do by non-expert. However, the test cases can not show the detail process in system
and the information obtained from activity diagram is difficult to process because there are no common rules d used
in this diagram.

4.2. Sequence Graph
Test cases result from DFS algorithm:

S1 => S2 => S3 => S4 => S5 => S7 => S6
Detail: Login (username, password) => Verify login (username, password) => Get user (userid) => [user
details] => Verify login => Login error message => Login success message.

Test cases result from modified DFS algorithm:
a. Success case:

S1 => S2 => S3 => S4 => S5 => S6.

636	 Meiliana et al. / Procedia Computer Science 116 (2017) 629–6378 Meiliana/ Procedia Computer Science 00 (2017) 000–000

[Ketik di sini]

Detail: Login (username, password) => Verify login (username, password) => Get user (userid) => [user
details] => Verify login => Login success message.

b. Failed case:
S1 => S2 => S3 => S4 => S5 => S7.
Detail: Login (username, password) => Verify login (username, password) => Get user (userid) => [user
details] => Verify login => Login error message.

This diagram represents the detail of methods called and executed on the system, which make the generated test
cases more detailed and specific. Based on that information the test cases can show more detailed information such
as what the tester need to fill in the application during the testing process.

4.3. SYTG Graph:

Fig. 5. SYTG graph

Test cases result from DFS algorithm:
A1 => A2 => A3 => A4 => S1=> S2 =>S3 => S4 => S5 => S7 => A5=> LOOP
Detail: Start => Open login page => Display login page => Enter username and password => Login (username,
password) => Verify login (username, password) => Get user (userid) => [user details] => Verify login =>
Login error message =>Verify login =>LOOP
a. Success case:

A1 => A2 => A3 => A4 => S1 => S2 => S3 => S4 => S5 => S6 => A6 => A7 => A8.
Detail: Start => Open login page => Display login page => Enter username and password => Login
(username, password) => Verify login (username, password) => Get user (userid) => [user details] =>
Verify login => Login success message => User has successfully login => Display home page => Finish.

b. Failed case:
A1 => A2 => A3 => A4 => S1 => S2 => S3 => S4 => S5 => S7 => A5.
Detail: Start => Open login page => Display login page => Enter username and password => Login
(username, password) => Verify login (username, password) => Get user (userid) => [user details] =>
Verify login => Login error message => Invalid username and password.

SYTG formed by combine the activity diagram graph and sequence diagram graph, that make the generated test
cases more detail and coverage general outline in a system that user do from the beginning to the end however this
test cases also contained redundant information, such as in this case it is show ‘success/failed notification’ two
times.

5. Conclusion and Future Work
Nowadays software testing is a mandatory process to ensure the created software is corresponding with business

process requirements. In this paper we presented modified DFS algorithm to generated automatic test cases using
UML activity and sequence diagram. Our study shows DFS algorithm needs to be modified as in our proposed
approach to generate appropriated test cases. From the experiment result, the test cases generated based on activity
diagram, sequence diagram, and SYTG (combination graph) are provided. Test cases that are generated base on
activity diagram coverage all activity from user to system however the test cases can not show the detail process in
system such as what the tester need to fill in the application during the testing process and the information obtained

	 Meiliana et al. / Procedia Computer Science 116 (2017) 629–637� 6378 Meiliana/ Procedia Computer Science 00 (2017) 000–000

[Ketik di sini]

Detail: Login (username, password) => Verify login (username, password) => Get user (userid) => [user
details] => Verify login => Login success message.

b. Failed case:
S1 => S2 => S3 => S4 => S5 => S7.
Detail: Login (username, password) => Verify login (username, password) => Get user (userid) => [user
details] => Verify login => Login error message.

This diagram represents the detail of methods called and executed on the system, which make the generated test
cases more detailed and specific. Based on that information the test cases can show more detailed information such
as what the tester need to fill in the application during the testing process.

4.3. SYTG Graph:

Fig. 5. SYTG graph

Test cases result from DFS algorithm:
A1 => A2 => A3 => A4 => S1=> S2 =>S3 => S4 => S5 => S7 => A5=> LOOP
Detail: Start => Open login page => Display login page => Enter username and password => Login (username,
password) => Verify login (username, password) => Get user (userid) => [user details] => Verify login =>
Login error message =>Verify login =>LOOP
a. Success case:

A1 => A2 => A3 => A4 => S1 => S2 => S3 => S4 => S5 => S6 => A6 => A7 => A8.
Detail: Start => Open login page => Display login page => Enter username and password => Login
(username, password) => Verify login (username, password) => Get user (userid) => [user details] =>
Verify login => Login success message => User has successfully login => Display home page => Finish.

b. Failed case:
A1 => A2 => A3 => A4 => S1 => S2 => S3 => S4 => S5 => S7 => A5.
Detail: Start => Open login page => Display login page => Enter username and password => Login
(username, password) => Verify login (username, password) => Get user (userid) => [user details] =>
Verify login => Login error message => Invalid username and password.

SYTG formed by combine the activity diagram graph and sequence diagram graph, that make the generated test
cases more detail and coverage general outline in a system that user do from the beginning to the end however this
test cases also contained redundant information, such as in this case it is show ‘success/failed notification’ two
times.

5. Conclusion and Future Work
Nowadays software testing is a mandatory process to ensure the created software is corresponding with business

process requirements. In this paper we presented modified DFS algorithm to generated automatic test cases using
UML activity and sequence diagram. Our study shows DFS algorithm needs to be modified as in our proposed
approach to generate appropriated test cases. From the experiment result, the test cases generated based on activity
diagram, sequence diagram, and SYTG (combination graph) are provided. Test cases that are generated base on
activity diagram coverage all activity from user to system however the test cases can not show the detail process in
system such as what the tester need to fill in the application during the testing process and the information obtained

 Author name / Procedia Computer Science 00 (2017) 000–000 9

from this diagram is difficult to process because there is no standard words used in this diagram, while test cases
that generated base on sequence diagram only coverage the system section but the generated test cases show the
details of business process within a system and base on that information the test cases can show more detailed
information, such as what the tester need to fill in the application during the testing process and the test cases that
generated base on combined graph between activity and sequence diagram show the details of business process
within a system from sequence diagram and coverage general outline in a system that user do from the beginning to
the end from activity diagram however this test cases also contained some redundant information from combined
activity and sequence diagram.

From this preliminary work, we will look up on how to optimize some test case using various kinds of genetic
algorithm and implement that algorithm in our application. Another UML diagram will be added to the future
experiment to provide extensive evaluation in this study field.

6. References

1. V.K.Shanthi a., MohanKumar G. A Novel Approach for Automated Test Path Generation using TABU Search
Algorithm. International Journal of Computer Applications. 2012;48(13):28–34.

2. Srivastaval J, Dwivedi T. SOFTWARE TESTING STRATEGY APPROACH ON SOURCE CODE APPLYING.
2015;6(3):25–31.

3. Alazzam I, Alsmadi I, Akour M. Test Cases Selection Based on Source Code Features Extraction. 2014;8(1):203–14.
4. Tripathy A, Mitra A. Test case generation using activity diagram and sequence diagram. In: Proceedings of International

Conference on Advances in Computing. Springer; 2013. p. 121–9.
5. Faria JP, Paiva ACR, Yang Z. Test generation from UML sequence diagrams. Proceedings - 2012 8th International

Conference on the Quality of Information and Communications Technology, QUATIC 2012. 2012;245–50.
6. Swain RK, Panthi V, Behera PK. Generation of test cases using activity diagram. 2013;
7. Panthi V. Automatic Test Case Generation using Sequence Diagram. 2012;2(4):22–9.
8. Hettab A, Chaoui A, Aldahoud A. Automatic Test Cases Generation From Uml Activity Diagrams Using Graph. 2013;
9. Sumalatha VM, others. Object Oriented Test Case Generation Technique using Genetic Algorithms. International

Journal of Computer Applications. 2013;61(20).
10. Asad S, Shah A, Shahzad RK, Shafique S, Bukhari A, Humayun M. Automated Test Case Generation Using UML Class

& Sequence Diagram. 2016;15(3):1–12.
11. Khurana N, Chillar RS. Test Case Generation and Optimization using UML Models and Genetic Algorithm. Procedia

Computer Science [Internet]. 2015;57:996–1004. Available from: http://dx.doi.org/10.1016/j.procs.2015.07.502

