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Cloud computing aims to provide dynamic leasing of server capabilities as scalable virtualized services to
end users. However, data centers hosting cloud applications consume vast amounts of electrical energy,
thereby contributing to high operational costs and carbon footprints. Green cloud computing solutions
that can not only minimize the operational costs but also reduce the environmental impact are necessary.
This study focuses on the Infrastructure as a Service model, where custom virtual machines (VMs) are
launched in appropriate servers available in a data center. A complete data center resource management
scheme is presented in this paper. The scheme can not only ensure user quality of service (through ser-
vice level agreements) but can also achieve maximum energy saving and green computing goals. Consid-
ering that the data center host is usually tens of thousands in size and that using an exact algorithm to
solve the resource allocation problem is difficult, the modified shuffled frog leaping algorithm and
improved extremal optimization are employed in this study to solve the dynamic allocation problem
of VMs. Experimental results demonstrate that the proposed resource management scheme exhibits
excellent performance in green cloud computing.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Cloud computing is a cost-effective service delivery model that
makes IT management and maintenance easy; it can rapidly adapt
to changing business needs. Cloud computing can be roughly
divided into three categories in accordance with the service type,
namely, Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS) (Gandhi, Harchol Balter,
Das, & Lefurgy, 2009). Users can easily avail of these services on
a pay-as-you-use basis without any geographical restrictions.
Cloud computing is a convenient, necessary, and shared network
computing resource with a dynamic configuration (including net-
work, service, storage, and application); it can be managed easily
and effectively by the resource manager at minimal management
costs (Gandhi et al., 2009). Cloud service providers need to con-
sider the convenience of cloud services without placing too much
emphasis on the hardware facilities to extend the computing
potential of a computing center. Thus, different cloud users can
enjoy cloud computing capabilities easily and efficiently.

The core of the cloud computing environment is the cloud data
center, which often consists of a number of highly configured hard-
ware facilities. The computing capability of the data center is the
main indicator considered by cloud service providers. With the
appearance of increasingly large data centers, the energy consump-
tion of data centers increases as well. This increase in energy con-
sumption affects the environment. For instance, carbon dioxide
emissions cause the greenhouse effect and have a serious impact
on climate and the environment. These effects will eventually
affect the operational benefits of a cloud service provider. Statistics
show that the energy consumption of a common data center is
approximately equal to that of 25,000 ordinary households
(Kaplan, Forest, & Kindler, 2008). The energy consumption of data
centers in the United States from 2008 to 2010 was supplied by 10
nuclear power stations. Clearly, more data centers cause higher
energy consumption. However, the energy consumption of data
centers has rarely elicited attention. Therefore, the computing
capacity performance of data centers and the problem of huge
energy consumption by these centers must be considered in
addressing the resource management optimization issue of data
centers. Green computing is the only method to enhance the oper-
ational efficiency of data centers and reduce damage to the envi-
ronment. The designers of these centers should consider the
efficient use of computing resources on the premise that the sys-
tem maintains excellent computing service capacity. The hosts of
data centers in idle or low utilization status also consume vast
amounts of energy. For instance, the energy consumption of a
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non-operative server (not turned off) accounts for approximately
70% of the full load energy consumption (Kusic, Kephart, Hanson,
Kandasamy, & Jiang, 2009). Similar conclusions can also be found
in the literature (Fernández-Montes, Gonzalez-Abril, Ortega, &
Lefèvre, 2012).

In reality, hardware facilities in cloud data centers do not
remain static for a long time. The state of most hardware facilities
often change. First, adding a new server to the system causes the
reconfiguration, restoration, or replacement of the existing server.
Second, the resource pool often changes the operating status to
satisfy the requirement of intermittent resource changes. Third,
live migration causes virtual machines (VMs) to achieve rapid re-
configuration and consolidation in different physical nodes to
achieve goals, such as load balancing. Fourth, some servers need
to transfer VMs to the appropriate servers; shutdown, mainte-
nance, and restart are operated after the live migration, thereby
causing some servers to become unavailable. Similarly, some serv-
ers need to be temporarily open to address unpredictable access
peak outbursts. Access to a server involves a certain degree of
uncertainty. In addition, changes could occur within each server,
such as changes in processing elements (PEs), memory size, hard
disk storage, and bandwidth. Current servers generally support
dynamic voltage frequency scaling (DVFS). In DVFS, the server
can adjust the operating frequency based on the current load to
achieve energy saving. Adopting a dynamic regulatory mechanism
is necessary for the dynamics and uncertainty of the resource.
Determining the transition state of the source, placing the new
applied VMs reasonably, and optimizing the allocation of VMs that
violate the service level agreements (SLAs) or VMs in the server
with very low CPU utilization are also necessary. These measures
are essential to ensure that the entire configuration of the VMs is
as optimal as possible. A dynamic regulatory mechanism can be
utilized to achieve automatic and dynamic management without
managerial or staff intervention. In a cloud environment, the data
center is usually presented in an over-provisioned state to meet
the uncertain resource application peak, thereby resulting in large
amounts of energy waste.

A complete data center resource management scheme is pro-
posed for the Infrastructure as a Service (IaaS) cloud environment
in this paper. The proposed scheme can not only guarantee user
quality of service (QoS) specified by SLAs but can also achieve max-
imum energy saving and green computing goals. The main contri-
bution of this study is the proposal of the complete dynamic
resource management scheme. Consolidation of resources is
achieved by VM migrations technology and low-utilized or idle
hosts switched to power saving mode to achieve energy saving
while ensuring that SLAs are adhered to. The intelligent method
of modified shuffled frog leaping algorithm (SFLA) based on
improved extremal optimization (EO) is applied to rapidly and effi-
ciently complete the dynamic allocation of VMs.

This paper is organized as follows. Section 2 provides a brief
review of related research on energy conservation and dynamic
VM allocation technologies. Section 3 discusses the intelligent
resource management scheduling framework. An intelligent
hybrid algorithm for the dynamic VM consolidation problem is
proposed in Section 4. Section 5 presents the experimental evalu-
ations and result discussions. Section 6 provides the conclusion
and suggestions for future work.

2. Related work

DVFS is a means of achieving hardware facilities energy conser-
vation (Chase, Anderson, Thakar, Vahdat, & Doyle, 2001). DVFS,
which is based on the different needs of the computing capacity
by application program, dynamically adjusts the running fre-
quency and voltage of the chip (for the same chip, the higher the
frequency, the higher the voltage) to achieve energy saving. A
low frequency can reduce power. However, energy cannot be saved
by simply reducing the frequency because for a given task, energy
consumption can only be reduced when the voltage and frequency
are lowered simultaneously. The implementation of DVFS depends
on the successful prediction of the number and execution time of
processing tasks in the server. Clock frequency and voltage do
not have a linear relation in a real-time system. Much uncertainty
exists among task execution time, energy consumption, and pro-
cessor voltage. Inappropriate frequent voltage adjustment will
degrade processor performance. Predicting the number of tasks is
difficult in most cloud environments.

DVFS generally requires power management through BIOS. Cir-
cuits designed by different manufacturers differ significantly. Intel,
Microsoft, Toshiba, and other companies jointly developed the
advanced configuration power interface (ACPI) specification to
establish a common power management interface between the oper-
ating system and the hardware facilities (Venkatachalam & Franz,
2005). ACPI improves the original APM through BIOS and provides
a relatively good power management mode and interface specifica-
tion in configuration management. ACPI sets a maximum of six
power states. Different states correspond to the different power con-
sumptions of the processor, memory, and hard disk. Most processors
at present support the states running, idling, sleeping, and closed.

Rusu, Ferreira, Scordino, and Watson (2006) proposed an energy
consumption management strategy based on QoS in connection
with the server cluster system. The strategy is divided into back-
end management and local management. Local management sup-
ports DVFS. When the back-end manager detects that the system
needs to close or open a server, the local manager controls power
by the DVFS module and switches the server into the correspond-
ing state. The system does not utilize live VM migrations technol-
ogy; it involves the off-line calculation of the back-end server to
decide whether to shut down or open the server. Such decision is
limited for energy saving.

Lee and Zomaya (2010) proposed an efficient energy manage-
ment strategy in a distributed cloud computing system. The
researchers defined the optimized objective function as a relative
superiority (RS) expression according to the relation between task
processing time and energy consumption. The RS value for the
assigned task is calculated first. The task is then allocated to the ser-
ver with maximum RS value. This algorithm assumes that all servers
are active and in good running condition and ignores the heteroge-
neity of the system. Only the allocation of the newly added VMs
was considered in this study. In the actual process, the adjustment
of VMs with SLA violation should be considered as well.

Kusic et al. (2009) defined the problem of energy management
in virtual heterogeneous environments as a scheduling optimiza-
tion problem and applied limited look-ahead control (LLC) during
processing. LLC aims to maximize the profit of the resource service
providers and minimize energy consumption and SLA violation.
The system applies the Kalman filter to estimate the number of
future client requests and predict the state of the system to achieve
necessary resource integration. However, the system cannot be
implemented in the IaaS cloud environment. In addition, the model
is extremely complicated. Adjusting a system with 15 nodes
requires 30 min. Thus, the model is difficult to apply to large-scale
and real-time cloud data centers.

Verma, Ahuja, and Neogi (2008) modeled the energy-aware
dynamic arrangements of VMs in the virtual heterogeneous envi-
ronment and turned them into a continuous optimization prob-
lem; the placement of VMs was regarded as the minimum
energy consumption and the maximum performance optimization
issue in each time frame. The researchers utilized a heuristic algo-
rithm to solve the packing problem and re-allocated the VMs of
each time frame by live migration strategy. In their follow-up work
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(Verma, Dasgupta, Nayak, De, & Kothari, 2009), the researchers
applied static strategy (month and year adjustment), semi-static
strategy (day and week adjustment), and dynamic strategy (min-
ute and hour adjustment) to regular adjustment. However, these
algorithms do not consider the issue of SLA violation. The system
performance diminishes when the load changes, and SLAs cannot
be guaranteed.

Berral et al. (2010) studied the VM dynamic consolidation prob-
lem on the premise of SLAs by applying machine learning tech-
niques to address the issue of energy consumption. Similarly,
Rodero, Viswanathan, and Lee (2012) employed the CPU dynamic
voltage scaling technique and virtual machine dynamic integration
technology to achieve the energy saving target of a data center.
However, these research methods consider only applications in
certain occasions, such as high-performance computing and appli-
cations with deadline constraints. Kramer, Petrucci, and
Subramanian (2012) adopted the column generation technique
and server power-saving technology based on CPU dynamic on/
off switching and developed an energy-saving scheme for hetero-
geneous virtual server cluster environments. The scheme provided
better results in a relatively short period of time. However, the
experiment did not consider the large-scale cluster network envi-
ronment. Beloglazov, Abawajy, and Buyya (2012) applied MBFD
to solve the dynamic allocation issue of VMs. However, the algo-
rithm cannot achieve the dynamic consolidation of VMs with the
desired maximum energy conservation.

Virtualization is applied in data centers at present. The systems
of these centers allow VMs to perform live migration among phys-
ical nodes to achieve improved performance or energy saving.
When the resources that VMs use are less than those actually
assigned, the VMs can migrate to other server nodes by adjustment
and combination. The idle server node would switch to energy-
saving mode via the ACPI interface to save energy. The current
resource scheduling strategy of cloud data centers focuses on sys-
tem performance improvement and ensures SLAs. The present
study aims to maintain SLAs and save energy. The following issues
are addressed. First, excessive energy consumption adjustment of
each server reduces the stability of the server. Second, frequently
shutting down the server leads to the result that QoS cannot be
guaranteed in a dynamic environment. Some VMs cannot obtain
sufficient resources during the access peak period because of
migration and consolidation. Therefore, the requirements of QoS
are not met. Third, in a virtual environment of enlarged numbers
host, using an ordinary scheduling algorithm to ensure rapid and
effective resource management scheduling is difficult. Ensuring
application performance and guaranteeing SLAs pose challenges
as well. An effective resource consolidation strategy should achieve
energy conservation and green computing as well as address user-
specified QoS requirements.
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Fig. 1. Intelligent resource management scheduling framework.
3. Dynamic resource management based on VM consolidation

Most of the existing energy saving technologies at present only
consider energy saving and ignore SLA violation issues. Moreover,
current research focuses on the allocation of newly added VMs
and not on the operational status of the allocated VMs and corre-
sponding server load status.

Compared with existing research, the present study addresses
the live dynamic allocation problems of VMs with a scheduling
framework based on an intelligent algorithm. The framework
applies live migration strategy based on current resource utiliza-
tion and switches some free resource nodes into power sleeping
mode to save energy. These steps can ensure SLAs and meet the
QoS requirements of heterogeneous underlying facilities and
requests of different types of VMs.
3.1. Scheduling framework

An intelligent dynamic resource management framework based
on the IaaS cloud environment is proposed in this paper. As illus-
trated in Fig. 1, when the user applies VM resources to the cloud
system and specifies SLAs, the scheduling framework allocates
the applied resources to the appropriate host based on the applied
requirements and operating condition of host. The placement of
VM must be completed quickly to ensure response speed. The
scheduling framework should implement real-time monitoring
on the hardware’s (host) running conditions and perform dynamic
consolidation of VMs based on the host’s running condition.
Dynamic consolidation with the server is mainly based on two con-
ditions. First, for hosts that cannot meet SLAs, reducing the upper
level of the threshold value of processor utilization, transferring
some VMs to other hosts to reduce the load, and ensuring that SLAs
are met are necessary. Second, for hosts whose utilization load is
below a certain low limit, transferring all VMs on this host to
another host and switching the host into sleeping state for energy
saving are necessary. This dynamic adjustment process should be
performed within a certain period of time. VM Scheduling problem
is essential for VMs that need to be integrated, and it can be seen as
a bin packing optimization problem with variable bin sizes and
prices. To solve it we apply the modified SFLA intelligent method
based on EO. Unlike the exact method or traditional heuristic algo-
rithm, this method avoids inefficiency and long computation time.
The SLAs of the VMs should be guaranteed during the optimization
process with minimum energy consumption. The number of VMs
that migrate should not be too large because the frequent live
migration of VMs affects service performance.

3.2. Scheduling strategy for the newly applied VM

Users can apply new services (VMs) to the data center any time.
After reaching SLAs, the cloud data center immediately assigns VMs
to the appropriate host. With the proposed resource management
scheduling scheme, the newly applied VMs are assigned to the host
that can meet SLA requirements and save energy. Allocation is per-
formed with the algorithm while traversing the host list only once,
including the advantage of fast response, as shown in Fig. 2.

3.3. Dynamic resource adjustment of the time window

The hardware and software of the host in the cloud data center
are in a constant changing environment. The VM service is also in a
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changing state. The scheduling framework monitors the host’s run-
ning condition and performs the dynamic consolidation of VMs
based on the running state of the host within a certain period of
time. Fig. 3 shows the specific adjustment strategy.

During the dynamic adjustment of each time window, VMs are
selected and consolidated from the hosts with SLA violation or low
load according to the adjustment strategy to reduce the number of
migration. For the selection of hosts with SLA violation, the server
service level is matched to the customized SLAs based on Eq. (1) by
dynamically adjusting the upper threshold of processor utilization:

new upper th / RSLA

rSLA
upper th: ð1Þ

In the equation above, upper th is the current upper threshold of
processor utilization, RSLA is the goal SLAs of the host, and rSLA is
the current SLAs of the host. The new threshold of processor utiliza-
tion is estimated as the arithmetic product of the current threshold
and the ratio of the targeted and current SLAs. The new threshold
will replace the old one. The upper th value cannot be decreased
or increased limitlessly. If the upper th value is too large, e.g.,
approaches 1, user QoS may not be guaranteed because the consol-
idation of VMs will not occur even when processor utilization is
close to 100%; this condition means that the host is overloaded.
On the other hand, the upper th value should not be too small
because it would cause high energy consumption. In this study,
upper th 2 ½0:5; 0:95� was used. The next step is to evaluate the
SLA violation of the current host and determine whether it meets
the specified SLA requirements. If not, some VMs will be selected
and added into the migration list according to Eq. (2). These VMs
are ready to migrate from the host:
Fig. 2. Scheduling strategy fo
vms ¼ V jV � hvs;
X

h2hvs

UtlzðhÞ �
X
v2V

UtlzðvÞ < upper th; jV j ! min

( )
: ð2Þ

In Eq. (2), hvs is the overall VMs on the current host;
P

h2hvsUtlzðhÞ is
the overall utilization level of the current host processor, and Utlz(v)
is the average utilization of VM v within the time window occupy-
ing the current processor. VMs that need to be migrated were
selected in this study by applying the strategy to minimize number
of VM migrations. This strategy aims to reduce system performance
degradation caused by the migration of VMs. When the sum of all
the processor utilization of the remaining VMs is less than the pre-
determined threshold after VM migrations, the specified require-
ments of SLAs are met. The specific scheduling strategy is shown
in Fig. 4.

As shown in Fig. 5, the system transfers all VMs below the lower
threshold of processor utilization to decrease the energy consump-
tion. After these VMs are transferred, the host is switched into
power-saving sleeping mode.

3.4. Energy consumption estimation of the host

Host energy consumption in the cloud data center is mainly
caused by the consumption of the CPU, memory, disk and refriger-
ation systems, and other hardware modules (Minas & Ellison,
2009). With the increasing popularity of multi-core CPUs, the
energy consumption of these CPUs has become a major component
of energy consumption. According to Kusic et al. (2009) and Fan,
Weber, and Barroso (2007), host energy consumption exhibits an
almost linear proportion to CPU energy consumption. Moreover,
the energy consumption of an idle host accounts for 70% of
r the newly applied VM.



Fig. 3. Dynamic adjustment of the time window in the cloud data center.

Fig. 4. VM migrations selection strategy in the SLA violation host.

Fig. 5. VMs of the host with low utilization added into the migration list.
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full-load operation energy consumption. The energy consumed by
VM migrations also requires consideration. Live VM migrations
technology allows fast and flexible reset of VMs in hosts
(Beloglazov & Buyya, 2011).

In live migration technology, the image file and real-time data
of VMs are stored in network attached storage. Therefore, the VM
memory and not the VM itself is copied during migration. The
migration time of VMs is equal to the quotient of memory size
and network bandwidth. However, the live migration of VMs can
still adversely affect the running services in the VMs. Voorsluys,
Broberg, Venugopal and Buyya (2009) discussed the impact of live
migration technology on system performance and performed
mathematical modeling, which revealed that the loss of perfor-
mance is mainly caused by migration time and the updated num-
ber on the service memory pages of VMs. For regular application
services such as Web servers, the live migration process consumes
approximately 10% of CPU utilization. Therefore, energy consump-
tion within unit time can defined in Eq. (3) as follows:
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EðhÞ ¼ 0:7EmaxðhÞ þ 0:3UtlzðhÞEmaxðhÞ þ 0:1Emax

X
i2v

TðiÞ: ð3Þ

In the equation above, Emax(h) is the energy consumption when host
h is in full load. Utlz(h) is the average utilization rate of the host pro-
cessor within unit time, v is the collection of VM migrations within
the unit time window, and T(i) is the migration time of VM i.

3.5. SLA estimation

Achieving QoS, which is often presented by SLAs, is an impor-
tant requirement for cloud computing systems. SLAs specify the
system computing ability, reaction time, and maximum visit
capacity, which differ in accordance with different application ser-
vices. Based on Beloglazov and Buyya (2011), SLAs were evaluated
in this study by defining SLA violation (SLAV) within a certain time
window as follows:

SLAV ¼ Tv

Ta

� �
Cv

Ca

� �
: ð4Þ

The first item in Eq. (4) is SLA violation by the overload operation of
the host processor. In this item, Tv is the time length of 100% utili-
zation of the host within the time window and Ta is the size of the
time window. One hundred percent host utilization means that the
host is overloaded. An SLA violation then occurs because responding
timely to the new access application is difficult when the host is
overloaded. The second item in the equation above is SLA violation
caused by performance degradation by live migration. In this item,
Cv is the MIPS consumed by migration, which accounts for 10% of
the total processor resources in the live migration process. Ca is
the applied general MIPS by VMs.

4. VM scheduling based on an intelligent algorithm

Dynamic resource adjustment is implemented within a certain
time period. It needs to determine the optimal scheduling scheme
for all VMs needed to be allocated in the global scope. Much com-
putation time is required in the calculation with the exact algo-
rithm. Improved EO was applied to modified SFLA (MSFLA) in
this study to solve the optimization problem.

4.1. Basic working principle of SFLA

SFLA is an intelligent algorithm inspired by natural organism
imitation (Eusuff & Lansey, 2003). This algorithm is based on two
search modes, namely, individual meme evolution, which is
regarded as the meme carrier in the ethnic group, and global
search for information exchange in the entire meme population.
SFLA functions by randomly generating a frog population with F
number (P = {X1,X2, . . . ,XF}). To solve the t dimension problem,
the position of frog i is set to Xi = [xi1,xi2, . . . ,xit]T. After generating
a frog population, the fitness value f(Xi) of each frog position is cal-
culated and arranged from the maximum to the minimum. The
frogs are then allocated into m groups with Eq. (5). Each group
has n frogs, and the equation is F = m � n:

Mi ¼ fXiþmðl�1Þ 2 Pj1 6 l 6 ng; 1 6 i 6 m; ð5Þ

where Mi is the ith group. A local search is performed in each group.
The last frog with the lowest fitness value in each group is updated
with Eqs. (6) and (7):

Di;wðkÞ ¼ rðXi;s � Xi;wðkÞÞ; ð6Þ

Xi;wðkþ 1Þ ¼ Xi;wðkÞ þ Di;wðkÞ; ð7Þ

where Xi,w(k) is the frog position with the worst fitness value at the
kth iteration of the ith group; Xi,s is the best frog position of the
group; r is a random number with r 2 [0, 1]; and Di,w(k) is the mov-
ing distance for the kth iteration of the worst frog. If the fitness
value of the new frog position is better than the original fitness
value after the update, the new position will replace the old one.
Otherwise, the moving distance will be updated with Eq. (8):

Di;wðkÞ ¼ rðXb � Xi;wðkÞÞ; ð8Þ

where Xb is the best frog position in the entire population. If no
improvement is observed after the update, random solution Xi,w will
be implemented. This operation is repeated in every group until the
specified iterations are reached. After the depth search in every
group, the entire frog population is re-mixed and sorted. The best
frog position is recorded based on the fitness value. The population
is then re-divided, and local depth search is performed again. The
search ends when the termination condition is satisfied.

4.2. Improvement of SFLA by dynamic adjustment of leaping vision

Frog foraging in SFLA refers to other frogs; it can be obtained by
updating Eq. (6). A frog’s leaping vision lies between the frog’s cur-
rent position and the position with maximum food in current.
However, a position with more food around the place with maxi-
mum food may exist in the current search. This position could lie
outside the area between the frog’s current position and the posi-
tion with maximum food. The original SFLA updating equation can-
not determine this region, thereby limiting the optimization ability
and affecting the convergence speed of the algorithm. Eq. (6) for
the kth mixed iteration can thus be modified as follows:

Di;wðkÞ ¼ rcðXi;s � Xi;wðkÞÞ; ð9Þ

where c is the leaping vision factor and c P 1. The new updated
equation increases the frog’s leaping range for every step, expands
the frog’s leaping vision, and enhances the optimization capability
of the algorithm. The algorithm can expand the range of the search
by expanding c. However, c cannot be infinitely expanded; other-
wise, the function of the current optimal position will weaken
and the algorithm will evolve into a random search algorithm.
Therefore, the scope of c is generally set to 1 6 c 6 3. Leaping vision
weight w was employed in this study to better control the relation
between local exploitation and global exploration in the frog’s leap-
ing process. Eq. (9) is modified as follows:

Di;wðkÞ ¼ wrcðXi;s � Xi;wðkÞÞ: ð10Þ

Parameter w, the leaping vision weight, has a significant impact on
the convergence behavior of the algorithm. A large parameter w
indicates strong global search capability and weak local search
capability. Conversely, a small parameter w indicates weak global
search capability and strong local search capability. The impact of
the previous pace (speed) on the current pace (speed) can be con-
trolled by adjusting w. A linear descending equation was applied
in this study as follows:

w ¼ wmin þ ðkmax � kÞðwmax �wminÞ=kmax: ð11Þ

Therefore, w gradually descends from wmax to wmin in a linear man-
ner as the iteration progresses. Global exploration and local exploi-
tation can therefore be properly controlled. The exploration
capability is strong early in the iteration; a large solution space
can be searched, and new regions can be constantly explored. Late
in the iteration, the algorithm gradually shrinks to a preferred area
for a finer search and increases the convergence speed. Eq. (8) can
be updated as follows:

Di;wðkÞ ¼ wrcðXb � Xi;wðkÞÞ: ð12Þ

This modified SFLA is referred to as MSFLA hereafter.
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4.3. MSFLA based on integer encoding for resource scheduling

t VMs were allocated in q hosts. The scheduling scheme was
then encoded into

X ¼ ½x1; x2; . . . ; xt �; xi 2 ½1; q�; xi is an integer: ð13Þ

The updated equation for MSFLA must be adjusted in this
encoding scheme. To neglect group subscript i and iteration k,
Xw, which represents the worst frog position in the current group,
was used. dj represents the jth component moving distance of Xw.
Therefore, Eq. (10) can be updated into Eq. (14):

dj ¼ wrcðxsj � xwjÞ; ð14Þ

where xsj and xwj are the values of the jth component in Xs and Xw,
respectively, which can be summarized in the following equation:

d0j ¼
0 xsj ¼ xwj;

dj

wcjðxsj�xwjÞj
otherwise;

(
: ð15Þ

d0j is employed to determine the value of the corresponding dimen-
sion of Xw to be set as xsj or xwj. The larger d0j is, the larger xsj setting
probability is. Moreover, the smaller d0j is, the larger the xwj setting
probability is. A sigmoid function is used to convert d0j into a prob-
ability value between 0 and 1:

sigðd0jÞ ¼
1

1þ expð�d0jÞ
; ð16Þ

where sigðd0jÞ represents the probability of x0wj to be set as xsj or xwj.
The updated equation for MSFLA can be modified as follows:

x0wj ¼
xsj; r0 < sigðd0jÞ;
xwj; r0 P sigðd0jÞ

8><
>: ð17Þ

where r0 is a randomly generated number (r0 2 ½0;1�). X0w is pro-
duced in all dimensions by the aforementioned updating process.
Similarly, if the individual needs to learn from the global optimal,
Eq. (18) can substitute for Eq. (14):

dj ¼ wrcðxbj � xwjÞ; ð18Þ

where xbj is the value of the jth dimension of Xb. Given that the
encoding of each dimension value is an integer, the coding sequence
is the VMs scheduling allocation scheme, which does not need to be
decoded.

4.4. Local search with the improved EO

The random solution of MSFLA can enrich group information
and maintain sample diversity. However, the algorithm’s conver-
gence efficiency is low. A good local search technology can be
applied to replace the random solution on the premise of maintain-
ing the diversified samples, thereby improving the search effi-
ciency. Extremal optimization (EO) proposed by Boettcher and
Percus (1999) based on the fundamentals of statistical physics
and self-organized criticality (SOC) is a new general-purpose local
search optimization approach. The evolution in this method is dri-
ven by a process where the weakest species in the population is
always forced to mutate. EO successively eliminates those worst
components in the sub-optimal solutions, and has been success-
fully applied to many continuous and discrete optimization prob-
lems (Jahan, Mohammad, & Akbarzadeh, 2012). Considering that
EO has strong local-search ability, in order to further improve the
local search ability of MSFLA, we present a novel hybrid algorithm
(MSFLA-EO) which makes full use of the exploration ability of
MSFLA and the exploitation ability of EO. This algorithm is used
to replace the random solution of MSFLA with the improved EO
process. The EO algorithm framework (Boettcher & Percus, 1999)
is shown in Fig. 6.
4.5. Evaluation of the improved EO component fitness value in MSFLA-
EO

When EO evolves, it becomes an individual consisting of several
components. Every component matches the corresponding solu-
tion vector. The EO individual and the frog position of MSFLA have
the same encoding. The algorithm regards each internal compo-
nent as having different contributions to the individual quality.
The fitness value is defined by the contribution each component
provides to the individual objective function value. The smallest
fitness value is the worst component. The worst component is
mutated in each EO iteration. In this study, every component
matches a VM that needs to be migrated. Therefore, the fitness
value of the component is as follows:

ki ¼
1

aðUtlzðhðiÞÞ�upper thÞþbUtlzðiÞ UtlzðhðiÞÞ > upper th;
1

bUtlzðiÞ UtlzðhðiÞÞ 6 upper th;

(
ð19Þ

where ki is the fitness value of component i (VM); h(i) is the target
host for VM i to be allocated; Utlz(h(i)) is the processor utilization
for target host h(i); Utlz(i) is the processor utilization for VM i;
and a and b are the weighting parameters. As indicated by the def-
inition of fitness value, for the host whose processor utilization
exceeds the upper threshold, the greater the processor utilization
is, the smaller the fitness value of VM pre-assigned to the host will
be; for the VM on the same host, the greater the processor utiliza-
tion is, the corresponding smaller the fitness value will be. The com-
ponent with a small fitness value is normally selected for mutation.

The selection of the mutation component was performed in this
study by the power-law probability in the sequence of the fitness
value to maintain the global search of the algorithm and to avoid
the local optimum. t VMs must be migrated. The selected probabil-
ity of each VM has the following allocation in accordance with the
sequence of the fitness value from largest to smallest:

pðrÞ / r�s 1 6 r 6 t; s P 0: ð20Þ
4.6. Establishment of the component mutation solution

Similar scheduling strategies exist in the component mutation
process and newly applied VMs as shown in Fig. 2; that is, the con-
figured hosts meet the SLA requirements and maximize energy
saving.
4.7. Runtime complexity and iteration number of EO

For a scheduling problem that involves t VMs and q hosts, in
each iteration of EO, the runtime complexity of fitness evaluation
for components is O(t), the runtime complexity of selection for
the mutation component is O(t), and the complexity of the alloca-
tion that places the component (VM) that needs to be mutated
(migrated) on one host is O(q). Therefore, the total runtime com-
plexity is O(N(2t + q)), where N is the iteration number of EO. Com-
putational complexity increases with the increase in the N value.
Obviously, a trade-off exists between computational cost and con-
vergent performance. According to our experimental observation,
the N value should not to be too large in our hybrid algorithm
(MSFLA-EO). The value of iteration number N is set to 2 in our
research.



Fig. 6. EO algorithm framework.

Table 1
Workload Data Characteristics (CPU Utilization).

Instance Date Number of VMs Mean (%) St. dev. (%)

p1 03/03/2011 1052 12.31 17.09
p2 06/03/2011 898 11.44 16.83
p3 09/03/2011 1061 10.70 15.57
p4 22/03/2011 1516 9.26 12.78
p5 25/03/2011 1078 10.56 14.14
p6 03/04/2011 1463 12.39 16.55
p7 09/04/2011 1358 11.12 15.09
p8 11/04/2011 1233 11.56 15.07
p9 12/04/2011 1054 11.54 15.15
p10 20/04/2011 1033 10.43 15.21
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5. Experiment and analysis

CloudSim toolkit, a cloud computing simulation platform for
simulations (Buyya, Ranjan, & Calheiros, 2009) launched by Grid
Laboratory of the University of Melbourne and the Gridbus project
in 2009, was utilized in this study. This toolkit adopts the GridSim
programming model to support cloud computing research and
development, provide the characteristics of cloud computing, and
support resource management and scheduling simulation. The
cloud information service of CloudSim and DataCenterBroker
served as the core of simulation scheduling to realize resource dis-
covery and information exchange. User-developed scheduling
algorithms can be implemented in DataCenterBroker to simulate
the scheduling algorithm. The latest version supports the energy-
aware simulated experience of hosts.

The simulation cloud platform was configured with 1000 hosts,
including 500 ProLiant DL360 G4p hosts (configured with
3400 MHz � dual-core, 6 GB memory, 1 GB network bandwidth)
and 500 ProLiant ML110 G3 hosts (configured with 3000 MHz �
dual-core, 4 GB memory, 1 GB network bandwidth). The energy
consumption of each server was calculated with Eq. (3) according
to average result of benchmark testing statistics in the fourth quar-
ter of 2010 (SPECpower, 2010) with Emax value of 259 W. The task
load data of the VMs were obtained from the CoMon Project, which
is one of the monitoring facilities of PlanetLab (Park & Pai, 2006).
The data mainly contains CPU utilization in over 1000 VMs of
500 different areas around the world tested every 5 min. We have
chosen 10 days from the workload traces collected during March
and April 2011. The characteristics of the data for each day are
shown in Table 1. Each VM load on the test set was considered a
new VM application during testing. In the simulation, the data cen-
ter should be able to allocate resources and run the service. An
intelligent scheduling framework was adopted for the intelligent
scheduling of all VM loads. SFLA, MSFLA, and MSFLA-EO were uti-
lized to compare scheduling. Under similar initial conditions, the
local parameters of the three scheduling algorithms in SFLA are
as follows: F = 100, m = 10, n = 10 and the number of internal iter-
ations inside groups is 10. In MSFLA and MSFLA-EO, c = 1.5,
wmin = 0.8, wmax = 2.5, and kmax = 1000; in MSFLA-EO, s = 1.5. If
the optimal solution does not improve after mixed iteration for
continuous G = 300 times, a convergence condition will develop
and the algorithm will be exited. Each scheduling scheme was exe-
cuted 40 times, from which the average value will be obtained. A
comparison was conducted in terms of SLAV and energy consump-
tion in the data center to evaluate the performance of the algo-
rithm. The experimental results are shown in Tables 2–4, Figs. 7
and 8.

Table 2 present the simulation results of the scheduling algo-
rithms for p1 (i.e., March 3, 2011). SLAV in the first column shows
the performance of the different algorithms obtained by testing the
SLAV value from 1% to 5% (�E�3). In the second column, LTH is the
lower threshold utilization of the host. Each SLAV value contains
LTH from 0.1 to 0.5. The first scheduling algorithm is Non Power-
Aware (NPA) policy, this policy does not apply any power aware
optimizations and implies that all hosts run at 100% CPU utilization
and consume maximum power all the time (Beloglazov et al.,
2012). The second is DVFS mode (Chase et al., 2001) in which all
VMs does not have any reset option or consolidation processing.
The third strategy is for resource adjustment strategy (proposed
in this paper). In this strategy, VMs are allocated by standard SFLA.
The fourth strategy allocates VMs with the improved SFLA
(MSFLA). The fifth strategy is the dynamic allocation strategy inte-
grated with EO (MSFLA-EO). Each algorithm was tested by different
SLAV and LTH combinations. In this manner, the value of energy
consumption (kWh) and the VM migrations (Migr.) number can
be obtained.



Table 2
Comparison Results of Several Scheduling Strategies for P1.

SLAV (�E-3) (%) LTH NPA DVFS SFLA MSFLA MSFLA-EO

Energy (kWh) Migr. Energy (kWh) Migr. Energy (kWh) Migr. Energy (kWh) Migr. Energy (kWh) Migr.

1 0.1 3455 0 856 0 186 13,250 153 14,125 145 14,293
0.2 3455 0 856 0 175 14,586 145 14,243 135 14,452
0.3 3455 0 856 0 164 14,889 143 14,991 134 15,213
0.4 3455 0 856 0 168 15,864 141 15,722 138 15,338
0.5 3455 0 856 0 171 15,912 145 15,874 143 15,864

2 0.1 3455 0 856 0 134 14,841 117 15,101 106 14,867
0.2 3455 0 856 0 125 15,547 107 15,246 102 15,146
0.3 3455 0 856 0 126 16,403 103 15,894 99 15,534
0.4 3455 0 856 0 128 16,900 105 16,025 100 15,861
0.5 3455 0 856 0 141 17,055 108 16,856 107 16,030

3 0.1 3455 0 856 0 124 15,455 107 15,852 102 15,662
0.2 3455 0 856 0 115 15,965 98 15,951 97 15,753
0.3 3455 0 856 0 113 16,819 96 16,023 93 16,142
0.4 3455 0 856 0 117 17,210 103 17,409 104 16,852
0.5 3455 0 856 0 128 17,521 108 17,476 104 17,013

4 0.1 3455 0 856 0 112 15,768 105 15,815 99 15,928
0.2 3455 0 856 0 106 16,212 95 15,895 95 16,353
0.3 3455 0 856 0 103 16,976 95 16,853 93 16,448
0.4 3455 0 856 0 103 17,328 99 17,001 98 16,657
0.5 3455 0 856 0 109 17,639 104 17,548 101 17,106

5 0.1 3455 0 856 0 109 16,037 98 16,346 94 16,127
0.2 3455 0 856 0 103 16,326 94 16,657 87 16,328
0.3 3455 0 856 0 99 16,934 92 16,850 87 16,669
0.4 3455 0 856 0 99 17,246 90 16,952 89 16,920
0.5 3455 0 856 0 104 17,730 97 17,159 95 17,228

Table 3
Scheduling Performance of the Different Algorithms under Different Parameter G.

G SFLA MSFLA MSFLA-EO

Time (S) Energy (kWh) Time (S) Energy (kWh) Time (S) Energy (kWh)

100 7.2 122 5.8 101 2.5 91
200 9.9 109 10.7 96 4.2 87
300 12.8 99 16.1 91 5.7 86
500 20 95 25.2 90 7.8 86
800 32.6 93 41.1 89 10.3 85

1000 41.7 91 51.9 89 12.5 85

Table 4
Energy consumption performance of the different algorithms. The bold values are the best results.

Algorithm p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

OODA 104.21 76.43 88.22 107.4 92.65 137.9 112.92 105.8 95.65 77.84
104.21 76.43 88.22 107 92.7 138 112.9 105.8 95.65 77.84

APA-VMP 94.21 72.29 78.73 100.8 86.58 107.5 106.9 97.29 89.13 78.68
93.01 71.52 76.5 95.3 84.4 106 104.3 95.57 87.5 76.08

MSFLA 94.25 71.98 83.26 99.27 85.25 106.6 103.28 96.5 88.05 75.22
91.35 70.18 81.7 97.8 83.1 104 101.2 94.55 86.14 73.14

MSFLA-EO 91.89 70.64 79.41 94.24 83.36 102.9 98.49 92.17 82.33 68.15
90.1 68.95 78.14 93.2 82.3 102 97.5 90.83 81.17 67.68
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The table shows that the energy consumption of the cloud data
center is greatly reduced by the resource adjustment strategy pro-
posed in this paper. Energy consumption accounts for only about
4% of the NPA strategy when the VM allocation strategy based on
MSFLA-EO is adopted. Hence, this strategy reduces energy con-
sumption significantly. Our experimental conditions, which
include 1000 hosts, are different from the actual hardware facilities
of CoMon Project. Thus, the percentage (about 4%) between our
proposed scheme and the NPA strategy for energy consumption
is different from the CPU mean utilization (about 10%) shown in
Table 1. When energy consumption is at its lowest (87 kWh),
5% � E�3 SLA violation is still maintained. This maintained value
indicates that the system maintains very good quality of service
as it saves energy.

According to the experimental data, compared with SFLA,
MSFLA and MSFLA-EO can improve system performance. The leap-
ing vision and weighting factors in MSFLA allow for better control
of the frog leaping search and enhance the efficiency of the algo-
rithm. For instance, when the equation is SLAV = 2% � E�3,
LTH = 0.4, the total number of VM migrations required by the
two allocation strategies (SFLA and MSFLA) are approximately
the same. However, the allocation efficiency of MSFLA is higher;
energy consumption is reduced by 17% ((128 � 105)/128). More-
over, the fine local search strategy of EO improves the scheduling



(a) p1  SLAV= 5% E-3 (b) p3 SLAV= 5% E-3

(c) p5 SLAV= 5% E-3 (d) p7 SLAV= 5% E-3

(e) p9  SLAV= 5% E-3 (f) p10 SLAV= 5% E-3 

Fig. 7. Energy consumption performance of different algorithms for different instances (p1, p3, p5, p7, p9, and p10).
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efficiency of MSFLA and saves energy when the number of VM
migrations is similar. For instance, when the parameters are
SLAV = 5% � E�3, LTH = 0.3, MSFLA-EO consumes minimal energy
(87 kWh).
Fig. 7 shows the energy consumption performance of the differ-
ent algorithms for different instances (p1, p3, p5, p7, p9, and p10)
under the condition that SLAV is equal to 5% � E�3. MSFLA-EO out-
performs the other two algorithms, i.e., SFLA and MSFLA. The



Fig. 8. The trend of changes of obtained solutions by MSFLA-EO with different
parameter G.

Fig. 9. Mean energy consumption performance of the different algorithms.

5814 J.-p. Luo et al. / Expert Systems with Applications 41 (2014) 5804–5816

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html
scheduling strategy of MSFLA-EO consumes the minimum energy
in all the cases. Fig. 7 also shows that LTH is not too small.
Although LTH can avoid putting too many hosts in the sleeping
state when its value is extremely small, the problem of high energy
consumption arises. The LTH value should not be too large because
it would cause frequent switching between sleeping and waking
states as well as increased energy consumption. An LTH value that
is large and approaches the upper threshold causes difficulty in
assigning VMs. Generally, the LTH value should be set between
0.2 and 0.3.

In the aforementioned algorithms, when the current optimal
solution shows no improvement for continuous G times mixed
iteration, the algorithm is assumed to have achieved convergence
and is exited. The scheduling scheme in Table 3 shows the average
execution time and energy consumption performance for all
instances in different parameter G. Fig. 8 shows the trend of
changes in the solutions obtained by MSFLA-EO with different
parameter G for instances p1, p3, p5, p7, and p9. The testing equa-
tion is SLAV = 5% � E�3, LTH = 0.3. Different parameter G values
will have different results from the different algorithms. The itera-
tions of the algorithm increase significantly with the increase in G.
Likewise, the algorithm scheduling optimization results improve
with the increase in scheduling time. At the same G value,
MSFLA-EO provides an excellent scheduling result within a short
period of time. When G = 300, MSFLA-EO can implement complete
scheduling at an average of 5.7 s and achieve a final energy con-
sumption of 86 kWh. Obviously, there is tradeoff between the
computational cost and the convergent performance. The G value
in this study was usually set between 200 and 300 for MSFLA-EO
to achieve the desired scheduling effect. The scheduling algorithm
is performed periodically. A complete scheduling configuration is
produced for each execution. The scheduling center performs
scheduling according to the scheduling configuration. For hosts
that need to be reconfigured, VM migrations or switching state is
performed. Therefore, the execution time of the algorithm must
be less than the scheduling period for the successful performance
of proposed scheduling scheme.

Beloglazov and Buyya (2011) introduces an energy-aware algo-
rithm called Optimal Online Deterministic Algorithms (OODA) to
address the scheduling problem in cloud data centers. This algo-
rithm applies the minimum migration time (MMT) strategy to
select VMs that need to be migrated and uses the MBFD
(Beloglazov et al., 2012) algorithm to address the VM placement
problem. This algorithm also applies the optimal strategy and sim-
ulates certain inputs under the CloudSim platform for the instances
p1–p10. With the Median Absolute Deviation (MAD) host over-
loading detection method, the derived mean SLAV is
4.12% � E�3. An experiment was conducted in this study under
similar testing conditions (with the same testing platform and
input condition) to compared MSFLA-EO with this algorithm. The
algorithm target SLAV is set to 4.12% � E�3 for better comparison.
Jeyarani, Nagaveni, and Vasanth Ramc (2012) proposes adaptive
power-aware virtual machine provisioner (APA-VMP), which
makes use of swarm intelligence methodology to detect and track
the changing optimal target servers for VM placement very effi-
ciently. The scenario is experimented by novel self-adaptive parti-
cle swarm optimization for VM provisioning, which makes possible
use of the power saving states of idle servers and instantaneous
workload on the operational servers. To compare the effectiveness
of these algorithms, APA-VMP replaced MSFLA-EO in our experi-
ments to address the VM allocation problems under same experi-
mental conditions. The experimental results of comparison are
shown in Table 4. Each instance was executed 40 times. The aver-
age energy consumption values and the best results (bold) are
recorded for each algorithm. Fig. 9 shows the mean energy con-
sumption values obtained by each algorithm for all instances.

Statistical tests were implemented as experimental tests to
investigate the quality of the results. We applied Friedman’s test
(García, Molina, Lozano, & Herrera, 2009) to determine if global dif-
ferences exist in the results for each algorithm. The average energy
consumption values of each algorithm were considered. All com-
putations were performed with the statistical software SPSS. The
v2-value and p-value of Friedman’s test are 24.6 and 0.18 � E�3,
respectively. Given that the p-value of Friedman’s test is lower
than the level of significance considered (a = 0.05), significant dif-
ferences exist among the observed results of each algorithm in all
the instances. Post-hoc statistical analysis can help detect concrete
differences among algorithms. Given that non-parametric tests do
not require explicit conditions to be conducted, it is recommended
that the sample of results be obtained following the same criterion;
that is, compute the same aggregation (average, mode, etc.) over
the same number of runs for each algorithm and problem. In this
study, The Wilcoxon test (García et al., 2009), which is a non-para-
metric test, was utilized to perform individual comparisons
between two algorithms (pairwise comparisons). The p-value asso-
ciated with a comparison was obtained by normal approximation
for the Wilcoxon T statistic. Therefore, a p-value lower than the
level of significance a indicates that obvious differences exist
between two algorithms.

Tables 5 summarizes the results of the Wilcoxon test. It
displays the sum of rankings obtained in each comparison and
the associated p-value. APA-VMP and MSFLA outperform OODA
because the p-values are very small. The statistical significance of



Table 5
Wilcoxon test for pairwise comparisons.

APA-VMP vs OODA MSFLA vs OODA MSFLA-EO vs OODA MSFLA vs APA-VMP MSFLA-EO vs APA-VMP MSFLA-EO vs MSFLA

R+ 1 0 0 5.5 1 0
R- 6.000 5.500 5.500 5.500 6.000 5.500
p-value .007 .005 .005 .093 .007 .005

Table 6
Performance of MSFLA-EO for Different Host Scales.

The number of host Time(S) Energy (kWh)

ProLiant DL360 G4 ProLiant ML110 G3

500 500 4.2 87
1000 1000 11.7 92
2500 2500 29.5 96
5000 5000 116.5 102
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combining pairwise comparisons is provided by
p ¼ 1�

Qk�1
i¼1 ð1� pHiÞ (García et al., 2009). We can deduce that

MSFLA-EO is better than the other three algorithms with a p-value
of p = 1 � (1 � 0.005)(1 � 0.007)(1 � 0.005) = 0.0169. Therefore,
we conclude that MSFLA-EO outperforms OODA, APA-VMP, and
MSFLA with level of significance a = 0.02; however, MSFLA does
not outperform APA-VMP under this significance level.

The performance of the proposed algorithm under different
host scales was also evaluated. As shown in Table 6, the number
of hosts is 1000, 2000, 5000, and 10,000 for each case (the numbers
of ProLiant DL360 G4 and ProLiant ML110 G3 are equal). The
parameters are SLAV = 5% � E�3, LTH = 0.3, and G = 200. The other
parameter settings were retained. All instances (p1–p10) were
tested, and the mean results are shown in Table 4. The overall
energy consumption exhibits minimal change with the increase
in the number of hosts. This result shows that the proposed algo-
rithm can accurately and effectively assign VMs to the appropriate
hosts. Therefore, the hosts are maintained in the best energy con-
sumption condition (most of the hosts are switched to the sleeping
power mode) and energy saving is achieved.

6. Conclusion

Given that the main purpose of cloud computing is to help con-
sumers manage unexpected demands for resources, data centers
have become inherently dynamic. In the IaaS cloud, instantaneous
resource provisioning on demand as well as resource reclamation
occur when the customer no longer requires the resources. Consid-
ering the thousands of hosts in a cloud data center, the heuristic
method can provide a better, more reasonable solution within
a short duration compared with conventional methods. An
energy-aware resource allocation scheme that involves the
dynamic consolidation of VMs was presented and evaluated in this
study. Performance models were built to help explore the trade-offs
between QoS and energy savings. The primary contribution of the
proposed resource management scheme is the dynamic consolida-
tion of the host’s resource by VM migration technology as well as
switching idle or low-utilized hosts into the power saving mode
for energy conservation while guaranteeing adherence to SLAs. A
novel hybrid algorithm (MSFLA-EO), which maximizes the explora-
tion capability of MSFLA and the exploitation capability of EO, was
developed to address the dynamic allocation problem of VMs effec-
tively. The improved algorithm not only enhances the SFLA frog
leaping vision but also improves local search capability. It can also
be easily applied to other combinatorial optimization problems.

Humans have become increasingly conscious of the environ-
ment. Recent studies show that data centers represent a large
and rapidly growing energy consumption sector of the economy
and are a significant source of CO2 emissions. Reducing greenhouse
gas emissions is the key energy policy focus of many countries
around the world. Both computer research community and indus-
try focus on green computing to make efficient use of computing
systems and reduce their environmental and social impact. Hard-
ware techniques can be utilized to solve energy problems; how-
ever, in many cases, these techniques require software
intervention to achieve optimum results. The proposed data center
resource management scheme can not only ensure user QoS (spec-
ified by SLAs) but can also maximize energy saving for green com-
puting. The experimental results show that the proposed method
results in a substantial reduction in energy consumption in cloud
data centers. For resource providers, the optimal allocation of
VMs will result in high utilization of resources, and therefore,
reduced operational costs. End users will benefit from the reduced
prices.

In our future work, we plan to investigate more complex work-
load models, where the dynamic behavior of the data center can
change dramatically and the resource management scheme must
be able to quickly respond to these changes. We will focus on
designing and implementing power-aware software frameworks
encompassing dynamic prediction service using adaptive provi-
sioning service and the multi-phase scheduling model, which can
allocate resources effectively, to improve power conservation in
modern data centers. Several researchers have addressed the
related fields (Yang, 2013). On the other hand, we have investi-
gated the problem of energy-aware dynamic consolidation of
VMs according to the current CPU utilization. However, to allow
for better VM placement optimization, VMs should be reallocated
according to the current utilization of multiple system resources,
including the CPU, RAM, and network bandwidth. A generic cloud
computing environment (IaaS) should be built to serve multiple
applications for multiple users, which create mixed workloads
and complicate the workload characterization. Our future research
will be directed toward the development of fast and effective algo-
rithms for VM placement optimization across multiple resources
for large-scale systems.
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