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The last decade, the computers world became a huge wave of data. Data mining tasks were invoked to
tackle this problem in order to extract the interesting knowledge. The recent emergence of some data
mining techniques provide also many interesting induction rules. So, it is judicious now to process these
induction rules in order to extract some new strong patterns called meta-rules. This work explores this
concept by proposing a new support for induction rules clustering and classification. The approach
invokes k-means and k-nn algorithms to mine induction rules using new designed similarity measures
and gravity center computation. The developed module have been implemented in the core of the
cognitive agent, in order to speed up its reasoning. This new architecture called the Miner Intelligent
Agent (MIA) is tested and evaluated on four public benchmarks that contain 25,000 rules, and finally it
is compared to the classical one. As foreseeable, the MIA outperforms clearly the classical cognitive agent
performances.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Nowadays, the induction rules have become inseparable
pattern of the artificial intelligence thanks to their existence as
the basis for many disciplines, such as the agent technology, data
mining and knowledge discovery. . .This paper is about how to
extend data mining techniques to induction rules in order to
extract meta-rules. There are many data mining tasks for instance:
clustering, classification, association rules mining, regression, pre-
diction,. . .We are interested through this work in the first two
tasks which are used on many applications (the image processing,
the intrusion detection,. . .etc) and can be solved by different
algorithms (k-means, HCA, fuzzy c-means. . .for clustering, KNN,
SVM,ID3,. . .for classification). K-nn and K-means are in the top
ten of data mining algorithms (Wu et al., 2008). The latter are
extended to induction rules by introducing new version of similar-
ity measure and gravity center computation. The algorithms called
K-NN-IR and K-means-IR are developed and demonstrated on a
public large scale benchmark including 25,000 induction rules.
The whole idea behind this work is to improve the reasoning
process by integrating the knowledge mining module in today’s
intelligent agent in order to speed up the reasoning engine process.
The rest of this paper is organized as follows: Next section shows a
short history of data mining. Section 2 summarizes related works.
In Section 3: induction rules representation are presented,
followed by proposing mathematical preliminaries. In Section 5,
the suggested algorithms are described and followed by the defini-
tion of a new architecture for intelligent agent. Then, experimental
results are shown in Section 7 compared to the previously
proposed algorithms. Finally we conclude by making some
remarks and talking about future works.
2. Data mining overview

The generation of models from a large number of data is not a
recent phenomenon. Egypt Pharaoh Amasis organizing the census
of the population in the fifth century BC Rocchi (Rocchi, 2003). This
is the seventeenth century we begin to analyze the data to find
common characteristics. In 1662, John Graunt published his book
‘‘Natural and Political Observations Made upon the Bills of Mortal-
ity’’ in which he analyzed the mortality in London and trying to
predict the appearances of the bubonic plague. In 1763, Thomas
Bayes shows that we can determinate not only probabilities from
observations derived from experience, but also the parameters
for these probabilities. Legendre published in 1805 an essay on
the least squares method for comparing a set of data with a math-
ematical model. From 1919 to 1925, Ronald Fisher develops the
analysis of variance as a tool for its proposed medical statistical
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inference. The 1950s saw the advent of computer technology and
computer calculation. Same methods and techniques are emerging
such as segmentation, neural networks and genetic algorithms, and
then in the 1960s, the decision tree, the method of mobile centers,
these techniques allow researchers to exploit and discover models
more accurate. The advent of the microcomputer stimulates
research and statistical analyzes are more numerous and precise.
The term ‘‘data mining’’ had a negative connotation in the early
1960s, expressing contempt for statisticians research approaches
without correlation assumptions. it fell into oblivion, and Rakesh
Agrawal employed again in the 80s when they were beginning
research on databases with a volume of 1 Mb. The concept of data
mining makes its appearance – according Pal (2007) – when the
IJCAI1 conferences took place in 1989. Then, in the 1990s, came
the machine learning techniques such as SVM in 1998, complement-
ing the tools of the data analysis. At the turn of the century, a
company like Amazon uses these tools to offer our customers
products that may interest. Actually, There are many tasks of data
mining such as: Supervised and unsupervised classification,
association rule mining, prediction and regression.

2.1. Supervised classification

Classification of a collection consists of dividing the items that
make up the collection into categories or classes (Kotsiantis,
2007; Jain, Murty, & Flynn, 1999). In the context of data mining,
classification is done using a model that is built on historical data.
The goal of predictive classification is to accurately predict the tar-
get class for each record in new data, that is, data that is not in the
historical data. A classification task begins with build data (also
known as training data) for which the target values (or class
assignments) are known. Different classification algorithms use
different techniques for finding relations between the predictor
attribute’s values and the target attribute’s values in the build data.
K Nearest Neighbor (K-NN from short) is one of those algorithms
that are very simple to understand, furthermore, it works incredi-
bly well in practice, especially in the anomaly detection domain
like Liao and Vemuri (2002), also for text categorization like in
the work Guo, Wang, Bell, Bi, and Greer (2006). Also it is surpris-
ingly versatile and its applications range from vision to proteins
to computational geometry to graphs and so on. With KNN algo-
rithm, we can obtain a satisfactory results, in addition, its basic
principle is very simple, and easy to implement. It also might sur-
prise many to know that K-NN is one of the top 10 data mining
algorithms. K-NN is an non parametric learning algorithm, it is
used when the data set does not obey a defined function as
(gaussian mixtures, linearly separable etc). K-NN algorithm can
be explained as follows, in the first time, training data that are
already classified are considered, and then to classify the new data,
we have to compute the similarities distance between this new
data and all training data. After that the k nearest neighbors are
extracted. In the end the new data is assigned to the most frequent
class of these neighbors.

2.2. Clustering data technique

Clustering data mechanism consist to put the homogeneous
data into the same group or class in order to dispatch the hetero-
geneous data into different groups. In the literature, it exists differ-
ent manner to group the data, the two principals are: the
hierarchical and the partitioning clustering. For the hierarchical
clustering, the clusters are inside each others. This category of
clustering is used when data can be separated in different levels.
1 International Joint Conference on Artificial Intelligence.
Also, CHA is the most known hierarchical algorithm, it starts by
putting each instance in one cluster after that it computes the dis-
similarities for all two instances to combine the clusters that have
the lower distance. This process is repeated until we get one cluster
(Steinbach, Ertöz, & Kumar, 2004; Han, Kamber, & Pei, 2006). In the
contrary of the partitioning clustering, it consists to cluster the
data separately. K-means is one of the simplest pure partitioning
learning algorithms that solves the well known clustering problem
(Han et al., 2006; MacQueen et al., 1967). The procedure follows a
simple and easy way to classify a given data set through a certain
number of clusters (assume k clusters) fixed initially. The main
idea is to define k gravity centers, one for each cluster. The cen-
troids should be placed in a cunning way because the clustering
result depends on their location in the clusters. In order to
optimize the efficacy of the outcomes, it is judicious to place them
as much as possible far away from each other. The next step is to
take each point belonging to a given data set and associate it to
the nearest centroid. When no point is pending, the first step is
completed and an early grouping is done. At this point we need
to recalculate k news centroids of the clusters resulting from the
previous step, and iterates the process. The latter stops when no
more changes of the clusters are observed, in other words when
the centroids do not move any more.
3. Related works

Our interest in this study revolves around two main subjects:
scalable cognitive agent and knowledge mining in general which
involves induction rules mining. As for first subject, we found very
few papers with ideas about the notion of scalable cognitive agent
like Cao, Gorodetsky, and Mitkas (2009), and nothing about the
paradigm that we would like to cover in this article. However,
we notice that biologists and psychologists are showing interest
in the study of scalable brain (Eliasmith, 2013). What can be said
about the second topic is that the literature offers a large spectrum
of detailed research on knowledge Mining. Mining knowledge
including simple data and other patterns have been examined
intensively over the last decade. In the following, we will talk
about some knowledge mining.

Many works are about mining association rules in order to
obtain meta rules whose purpose is to reduce the large number
of discovered rules. The CLOSET algorithm was proposed in
Strehl, Gupta, and Ghosh (1999) as a new efficient method for
mining closed itemsets. CLOSET uses a novel frequent pattern tree
(FP-tree) structure, which is a compressed representation of all the
transactions in the database. Moreover, it uses a recursive
divide-and-conquer and database projection approach to mine
long patterns. Another solution for the reduction of the number
is introduced by Hahsler and Chelluboina (2011) used an item-
set-tid set search tree and pursued with the aim of generating a
small non redundant rule set. To this goal, the authors first found
minimal generator for closed itemsets, and then, they generated
non redundant association rules using two closed itemsets. A
new algorithm to group rules via hierarchical clustering has been
developed in Berrado and Runger (2007) to visualize the large
number of rules. The clustering of rules is done by defining a
new distance called dJaccard that represents the number of items of
the two rules divided by the number of unique items. Saneifar,
Bringay, Laurent, and Teisseire (2008) were interested in discover-
ing sets of data. In their paper, they have developed a new similar-
ity measure between two rules and extended k-means algorithm to
cluster them. In literature some works about induction rules anal-
ysis have been proposed: In Poongothai and Sathiyabama (2012b),
eh authors have developed a new algorithm to select the interest-
ing induction rules from all the discovered rules in web mining
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process. Another work Poongothai and Sathiyabama (2012a) was
proposed in which a score function is used to evaluate such rules.
Contrary to induction rules analyzing, there are not many works
about induction rules mining. The latter consists in mining the
induction rules in order to obtain meta knowledge. The first
attempt was made in the previous works Drias, Aouichat, and
Boutorh (2012), Chemchem, Drias, and Djenouri (2013) and
Chemchem, Djenouri, and Drias (2013) where the concept of
induction rules mining has been introduced for the first time. An
interesting incremental clustering approach was proposed to
address the problem however the design of both the distance
between rules and the centroid is still not efficient enough.
Recently, another previous work has been published (Chemchem
et al., 2013) in order to cluster a big rule base using multilevel
paradigm.
4. Induction rules representation

The web is featured by huge amounts of data bases from differ-
ent fields. Applying data mining process to these data bases, many
large knowledge bases too are extracted. It is very interested to
deal this knowledge bases in order to discover a new hidden pat-
terns that called ‘‘meta-knowledge’’. For this, a new concept of
knowledge mining is necessary.

Before talking about knowledge mining, the knowledge
representation must be presented first. Fig. 1 shows the various
knowledge representation formalisms from the procedural form,
which is rigid and well structured to the declarative form, which
is on the contrary more open and free (Tuomi, 1999).

(1) The procedural approach: The procedural approach invokes
the simplicity and the ease of understanding, represented
by algorithms simulating real behaviors. In addition the pro-
cedural representation allows to treat problems with algo-
rithmic style that is fully analyzable and understandable.

(2) The declarative approach: This approach is more flexible
because it provides heuristic expressions using statements.
The declarative representation allows to specify constraints
and learn independently methods of use. The control struc-
ture is separated from the knowledge entered as rules on
bulk data. The primary interest for this representation is
modularity.

Furthermore, the procedural form is forced by a limited gram-
mar for this, it is more interesting to deal the more declarative rep-
resentation (natural language phrases). Nevertheless, natural
language phrases grammar is very complicated, in other hand
induction rules are the closest representation from natural
Fig. 1. Knowledge representation.
language phrases, that is why this work is designed for induction
rules mining.

An induction rule is a Boolean formula of the form: R : X ! Y ,
where X and Y are sets of clauses. X is called the premise of the rule
and Y its consequence (Grzymala-Busse, 1997).

The clause is a comparison between two elements as the form:
a operator b; where ða; bÞ � ðA;VÞ= A is a set of variables, V is a set
of values. ða; bÞ is an element of a Cartesian set A�V.
5. Mathematical preliminaries of induction rules mining

Defining the mathematical preliminaries of induction rules is a
necessary step before the mining process. In this work we propose
a new similarity measure and the gravity center computation for-
mulas that will be used in their mining approaches.

5.1. Similarity measure

The similarity between two rules measures the degree of like-
ness between them. On the contrary, their dissimilarity denotes
the degree of disparity. In Drias et al. (2012), the authors proposed
the distance between two rules r1 and r2 as:

Dðr1; r2Þ ¼
jC1

S
C2 j�jC1

T
C2 jþjV1

S
V2 j�jV1

T
V2 j

jR1þR2 j
.

where
Ci: represents the set clauses of Ri.
Vi: represents the set variables of Ri.
The distance D represents perfectly the similarity measure

between two rules. Nevertheless, there is the supplementary oper-
ations such as V1

S
V2 and V1

T
V2, because the set V is included in

the set C. Furthermore, C1
S

C2 and C1
T

C2 are already computed.
Intuitively, the rules are similar when they share a lot of

identical components such as clauses. They are dissimilar if they
are different from each other. For this purpose, We propose as a
similarity measure noted Dist clauses between two rules R1 and
R2 which based only on the clauses sets the following formula:

Dist clausesðR1;R2Þ ¼ Total clausesðR1;R2Þ
� Shared clausesðR1;R2Þ: ð1Þ

For example: Let consider two rules R1 and R2:
R1: IF (temperature = hot) AND (humidity = low) THEN

(outlook = sunny),
R2: IF (outlook = sunny) AND (temperature = hot) AND

(wind = light) THEN (play-tennis = no),
Clauses(R1) = {(temperature,hot), (humidity, low),

(outlook,sunny)}.
Clauses(R2) = {(outlook,sunny), (temperature,hot), (wind,-

light), (play_tennis,no)}.
Dist_clause(R1,R2) = Total_clause(R1,R2) � Shared_clause(R1,

R2) = 5 � 2 = 3.

5.1.1. Analyze and demonstration
Let us consider the induction rules space noted IR that contain

all possible rules.
To prove that Dist_clauses formula is a valid metric distance

formula between two rules belonging to IR, the following proprie-
ties should be demonstrated:

1. 8ðr1; r2Þ 2 IR2;Dist clausesðr1; r2Þ 2 IR.
2. 8r 2 IR;Dist clausesðr; rÞ ¼ 0.
3. 8ðr1; r2Þ 2 IR2;Dist clausesðr1; r2Þ ¼ Dist clausseðr2; r1Þ.
4. 8ðr1; r2; r3Þ 2 IR3;Dist clausesðr1; r2Þ 6 Dist clausseðr1; r3Þþ

Dist clausesðr3; r2Þ.

Since, Clauses(ri) is a set then:
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Total clausesðr1; r2Þ ¼ Clausesðr1Þ
[

Clausesðr2Þ ð1Þ
Shared clausesðr1; r2Þ ¼ Clausesðr1Þ

\
Clausesðr2Þ ð2Þ

The following demonstration is based on Eq. (1) and Eq. (2).

Propriety 1. Dist_clause is decomposed on two part:
Total_clauses(r1; r2) 2 R and Shared_clauses(r1; r2) 2 R.
It is evident that Total_clauses � Shared_clauses 2 R, so

Dist_clauses 2 R.
It implies that the first propriety is verified.
Propriety 2. Let be r1 2 IR:

Dist clausesðr1; r1Þ ¼ Total clausesðr1; r1Þ � Shared clausesðr1; r1Þ:
Total clausesðr1; r1Þ ¼ clausesðr1Þ

[
clausesðr1Þ:

) Total clausesðr1; r1Þ ¼ clausesðr1Þ ð3Þ

Furthermore;

Shared clausesðr1; r1Þ ¼ clausesðr1Þ
\

clausesðr1Þ:
) Shared clausesðr1; r1Þ ¼ clausesðr1Þ ð4Þ

By (3) and (4), it has:
Dist_clausesðr1; r1Þ ¼ 0.
So, the second propriety is checked.
Propriety 3. Let us consider two rules ðr1; r2Þ 2 IR2.

Dist clausesðr1; r2Þ ¼ Total clausesðR1;R2Þ � Shared clausesðR1;R2Þ:
Total clausesðr1; r1Þ ¼ clausesðr1Þ

[
clausesðr2Þ

¼ clausesðr2Þ
[

clausesðr1Þ:
¼ Total clausesðr2; r1Þ:

) Total clausesðr1; r2Þ ¼ Total clausesðr2; r1Þ ð5Þ

Furthermore;

Shared clausesðr1; r1Þ ¼ clausesðr1Þ
\

clausesðr1Þ
¼ clausesðr2Þ

\
clausesðr1Þ:

) Shared clausesðr1; r2Þ ¼ Shared clausesðr1; r2Þ ð6Þ

By (5) and (6), it has:
Dist_clausesðr1; r2Þ ¼ Dist clausesðr2; r1Þ.
) the third propriety is verified.
Propriety 4. We pose:
f ðr1; r2Þ ¼ Dist clausesðr1; r2Þ. and gðr1; r2; r3Þ ¼ Dist clauses

ðr1; r2Þ þ Dist clausesðr2; r3Þ.
If we can prove that: Maxðf ðr1; r2ÞÞ 6 Minðgðr1; r2; r3ÞÞ then we

conclude that:
8ðr1; r2; r3Þ 2 IR3;Dist clausesðr1; r2Þ 6 Dist clausseðr1; r3Þ þ Dist

clausesðr3; r2Þ.
In other term, f will be maximized and g will be minimized, if

we find that f stay inferior to g, in this moment we can say that.
8ðr1; r2; r3Þ 2 IR3; f ðr1; r2Þ 6 gðr1; r2; r3Þ.
According to the number of clauses of r1, and r2, and r3

respectively, we have six cases:

� Case 1: clausesðr2ÞP clausesðr3ÞP clausesðr1Þ.
� Case 2: clausesðr2ÞP clausesðr1ÞP clausesðr3Þ.
� Case 3: clausesðr3ÞP clausesðr2ÞP clausesðr1Þ.
� Case 4: clausesðr3ÞP clausesðr1ÞP clausesðr2Þ.
� Case 5: clausesðr1ÞP clausesðr3ÞP clausesðr2Þ.
� Case 6: clausesðr1ÞP clausesðr2ÞP clausesðr3Þ.
For each case, the following inequality should be demonstrated:
Maxðf ðr1; r2ÞÞ 6 Minðgðr1; r2; r3ÞÞ.
Case 1: clausesðr2ÞP clausesðr3ÞP clausesðr1Þ:
In one hand, Max(f) ) Max(Total_clauses(r1; r2) and

Min(Shared_clauses(r1; r2).

So; it must be clausesðr1Þ
\

clausesðr2Þ ¼ ;: ð7Þ

that implies:

Total clausesðr1; r2Þ ¼ clausesðr1Þ þ clausesðr2Þ: ð8Þ

and

Shared clausesðr1; r2Þ ¼ 0: ð9Þ

(8) and (9) give:

Maxðf ðr1; r2Þ ¼ clausesðr1Þ þ clausesðr2Þ: ð10Þ

In other hand, Min(g) ) Max(Shared_clauses(r1; r3),
Max(Shared_clauses(r3; r2) and Min(Total_clauses(r1; r3),
Min(Total_clauses(r3; r2)).

MinðTotal clausesðr1; r3ÞÞ ) clausesðr1Þ � clausesðr3Þ: ð11Þ

So,

Shared clausesðr1; r3Þ ¼ clausesðr1Þ: ð12Þ

To maximize Shared_clauses(r3; r2) and by (7), (11) it should be
that: clauses (r3)

T
clauses(r2) ¼ clauses(r3)nclauses(r1).

That give us:

Shared clausesðr3; r2Þ ¼ clausesðr3Þ � clausesðr1Þ ð13Þ

By hypothesis of case 1 it has:

clausesðr3Þ > clausesðr2Þ )MinðShared clausesðr3; r2ÞÞ
¼ clausesðr2Þ: ð14Þ

By (11)–(14) we obtain:

MinðgÞ ¼ 2 � clausesðr3Þ þ clausesðr2Þ: ð15Þ

and

clausesðr1Þ þ clausesðr2Þ 6 clausesðr3Þ þ clausesðr2Þ: ð16Þ

If we replace (16) in (15) and (10) we obtain:
Max(f) 6Min(g). So,The first case is verified.
The other cases follow the same reasoning with a small

modifications.
We have checked that the Dist_clauses respect the all proprie-

ties of a standard distance. For consequent, we can say that Dis-
t_clauses formula is a valid metric similarity measure between
inductions rules.
5.2. Gravity center computation

The average of rules depends upon the similarity measure for-
mula used. For example, for the previous measure, we were not
interested in the average rule, but in the clauses of average rule.
To cluster induction rules by k-means algorithm, we need a for-
mula to compute a centroid. Conventional formulas used in the
classical k-means cannot be applied here, since k-means manipu-
lates data and not rules. For this reason, we propose three formulas
based on propositional logic operators, to approximate the cen-
troid of induction rules computation.

1. UOI (Union Over Intersection) Formula: Consists in calculating
the union and the intersection of all clauses of Ci (a cluster of
induction rules) separately, and then to subtract the intersec-
tion result from the union result.



Table 1
Table of distances.

Rules Ri C1 C2 C3 Min Distance

R1 0 8 8 C1

R2 8 0 4 C2

R3 8 4 0 C3

R4 7 7 7 C1

Table 2
Table of distances.

Rules Ri C1 C2 C3 Min Distance

R1 3 8 8 C1

R2 11 0 4 C2

R3 11 4 0 C3

R4 4 7 7 C1
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clausesðcenter ruleÞ ¼ ½clausesðr1Þ [ clausesðr2Þ [ . . . [ clausesðrmÞ�
�½clausesðr1Þ \ clausesðr2Þ \ � � � \ clausesðrmÞ�.

2. IUC (Intersection Union Center) Formula: In this case, we calcu-
late the intersection of all clauses of Ci group rules, then we will
do union between the obtained result and old gravity center of
Ci as following:
clausesðcenter ruleÞ ¼ ½clausesðr1Þ \ clausesðr2Þ \ . . .\ clausesðrmÞ�
rbrack[ clausesðgiÞ.

3. UIC (Union Intersection Center) Formula: We calculate the
union of all clauses of Ci group rules then we will do intersec-
tion between the obtain result and oldster gravity center of Ci
as following:
clausesðcenter ruleÞ ¼ ½clausesðr1Þ [ . . . [ clausesðrmÞ�\
clausesðgiÞ.

For example: Let consider the set clause rule_center of the pre-
vious iteration is R1, and three rules R1;R2;R3 as follows:

R1: if x = 2 and y = 3 and z ¼ 5 then t ¼ 8.
R2: if x = 2 and y = 3 and z ¼ 6 then t ¼ 8.
R3: if y = 3 and z = 2 then t ¼ 8.
clausesðR1Þ ¼ fðx;2Þ; ðy;3Þ; ðz;5Þ; ðt;8Þg.
clausesðR2Þ ¼ fðx;2Þ; ðy;3Þ; ðz;6Þ; ðt;8Þg.
clausesðR3Þ ¼ fðy;3Þ; ðz;2Þ; ðt;8Þg.
UOIðcenter ruleÞ ¼ ½clausesðr1Þ [ clausesðr2Þ [ clausesðr3Þ��

½clausesðr1Þ \ clausesðr2Þ \ clausesðr3Þ� ¼ fðx;2Þ; ðz;5Þ; ðz;2Þ; ðz;6Þg.
IUCðcenter ruleÞ ¼ ½clausesðr1Þ \ clausesðr2Þ \ clausesðr3Þ�[

clausesðgiÞ ¼ fðy;3Þ; ðt;8Þ; ðz;5Þ; ðx;2Þg.
UICðcenter ruleÞ ¼ ½clausesðr1Þ [ clausesðr2Þ [ clausesðr3Þ�\

clausesðgiÞ ¼ fðy;3Þ; ðt;8Þg.

6. Induction rules mining tasks

From the preliminaries of induction rules presented in the pre-
vious section, the classical mining fields can be extended to deal
with rules as follows:

6.1. Induction rules clustering

From the previous subsections, we can propose an adaptation of
k-means algorithm to deal with induction rules noted K-means-IR
as follows in Algorithm 1.

Algorithm 1. K-means-IR

Notation: Gi: gravity center of group i.
1-Choose k initials centers C1;C2; . . . ;Ck.
2- For each rule: affect it to group i that its gravity center is

the nearest.
3- If (any group does not change) then stop and exit.
4- Calculate the new centers Gi for all Ci such as: Gi is the

average of rules of the group Ci.
5- Go to 2.

For example: let consider this small induction rules set:

R1: If (temperature ¼ hot) and (humidity ¼ low) and (outlook ¼
sunny) then (play_tennis ¼ yes).
R2: If (age ¼ 29 years) and (income >¼ 3000) and (married ¼
yes) then (children ¼ 1).

R3: If (name ¼ Casillas) and (age ¼ 29 years) and (children ¼ 1)
then (team ¼ Real_Mardrid).

R4: If (vehicle ¼ classic) and (brake ¼ true) then (danger_
state ¼ false).

By fixing the parameter k at 3 clusters the process of clustering
is as follows:

Initially the 3 centroid are chosen randomly, for example:
C1 ¼ R1;C2 ¼ R2, and C3 ¼ R3 where Ci is the centroid of cluster i.
and then we must to calculate the distances that separate each
rules Ri to the centroid Cj as shown in Table 1:

After the affectation of each rules to the nearest centroid (as
shown in the fifth column of Table 1), the new centroid are
calculated:

C1 ¼ fðtemperature; hotÞ; ðhumidity ¼ lowÞ; ðoutlook ¼ sunnyÞ;
ðplay tennis ¼ yesÞ; ðvehicle ¼ classicÞ; ðbrake ¼ trueÞ;
ðdanger state ¼ falseÞg.

C2 ¼ R2.
C2 ¼ R2.
C3 ¼ R3.
The new centroid are different from the first ones, then we have

to re-affect each rule to the nearest centroid as follows in Table 2:
From the fifth column of Table 2 we remark that the new cen-

troid are the same of the last step, so the clustering process is
stopped and the clusters are as follows:

C1 ¼ fR1;R4g: C2 ¼ fR2g: C3 ¼ fR3g:
6.2. Induction rules classification

Similarly, The K-Nearest Neighbors algorithm known as K-NN is
adapted to the supervised classification of induction rules noted K-
NN-IR as explained in Algorithm 2.

Algorithm 2. K-NN-IR

1. input: a rule R and an integer k between 1 and the number
of rules already classified.

2. For (each classified rule Ri) do
Calculate the distance Dist(R, Ri).

end for
3. - Select the k nearest neighbors of R;
4. For (each class) do

Count the number of rules belonging to the k nearest
neighbors of R

end for
5. - Attribute to R the class that has the maximum count class.
For example: Let us consider the following small rules
set already classified:

R1 : If ðtemperature ¼ hotÞandðhumidity ¼ lowÞandðoutlook ¼
sunnyÞthenðplay tennis ¼ yesÞ : class1.

R2 : If ðtemperature ¼ hotÞandðhumidity ¼ hightÞand ðoutlook ¼
sunnyÞthenðplay tennis ¼ NoÞ : class1.

R3 : If ðage ¼ 29yearsÞandðincome >¼ 3000Þandðmarried ¼ yesÞ
thenðchildren ¼ 1Þ : class2.



Table 3
Table of distances.

Ri R1 R2 R3 R4 R5 R6

R7 5 5 7 7 7 7
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R4 : If ðage ¼ 40yearsÞandðincome >¼ 3000Þand ðmarried ¼ yesÞ
thenðchildren ¼ 2Þ : class2.

R5 : If ðname ¼ CasillasÞandðage ¼ 29yearsÞandðchildren ¼ 1Þthen
ðteam ¼ Real MardridÞ : class3.

R6 : If ðname ¼ RooneyÞandðage ¼ 28yearsÞandðchildren ¼ 0Þthen
ðteam ¼ ManchesterUnitedÞ : class3.

And we must to classify a new Rule R7:
R7 : If ðoutlook¼ sunnyÞandðwind¼ strongÞthenðplain travel¼NoÞ.
In the first step we must to calculate the distances that separate

this new rule to each rule already classified, as shown in Table 3.
With fixing the parameter k to 3, the 3 nearest neighbors rules

are chosen:
The 3 nearest neighbors (R7) = {R1;R2;R3}.
After the neighbors extraction step, the most frequent class for

these neighbors is calculated:
{R1: class 1}, {R2: class 1}, {R1: class 3}, we remark that the most

frequent class is the class1, finally the new rule: R7 is affected to
the class 1.
7. The Miner Intelligent Agent

The cognitive agent is an autonomous software entity which
develops its knowledge using knowledge discovery and engineer-
ing methods as well. It operates usually on using learning knowl-
edge for solving problems. Given an order on different
intelligence degrees, the cognitive agents can be classified into
three categories:

� Cognitive agents based on expert systems. These agents develop
their knowledge using an inference engine.
� Cognitive agents based on machine learning. These agents

extract knowledge using machine learning techniques.
� Cognitive agents based on Data Mining. With this new trend,

agents extract more efficiently knowledge because they rely
on other more powerful methods of knowledge discovery
(Shen, Hao, Yoon, & Norrie, 2006).

In this section we propose a new extension of intelligent agents
called Miner Intelligent Agent or MIA for short. It is designed
mainly by integrating the induction rules mining module in the
Fig. 2. The Miner Intellige
agent architecture. This extension results consequently in a need
to review the reasoning mechanism.

We define the MIA as a cognitive agent that has the ability to
reason on a very large scale knowledge base. Therefore its design
must rely not only on a knowledge based system but also on a sca-
lability tool to manage the prohibitive base size.

This definition means that the difference between the ordinary
cognitive agent (Wooldridge, Jennings, & Kinny, 2000) and the MIA
resides in the capability to control extremely large amount of
knowledge or not. As a consequence, to design a MIA, one approach
could be to augment the ordinary cognitive agent architecture such
as an expert system with a sophisticated tool to manage the scala-
bility of the amount of knowledge. We can think in this case, in a
first time about a strong clustering induction rules allowing the
reduction of the tremendous knowledge volume to the agent scale.
In the second time, and when the new fact comes from the agent
environment, to classify them using the k-NN-IR algorithm in order
to infer just the concerned ruled -induction rules belonging to the
same class of the new fact- and not all the agent’s rule base.

7.1. Architecture of the Miner Intelligent Agent

The general architecture of a MIA can be deduced from the def-
inition and its analysis. Fig. 2 depicts the general framework of the
miner intelligent architecture. It is composed by the following
components:

- A huge knowledge base including induction rules and factual
knowledge.

- An induction rules mining module to manage the scalability of
the induction rules.

- A meta-knowledge base containing the clusters centers of the
rule base computed by k-means-IR.

- An inference engine to allow the agent to reason on the meta-
knowledge base.

- An interface allowing the agent to communicate with its
environment.
� The knowledge base It contains all the knowledge perceived
and developed by the agent. It contains induction rules of the
form ’If condition Then action’. It also save facts interpreted
from the environment or deduced by the agent through the
inference engine.
� The meta-knowledge base It is structured as a set of reason-

able size of knowledge bases relatively to the global amount
of knowledge. In other terms, each cluster of the meta-knowledge
nt Agent architecture.



Table 4
Benchmark construction.

Benchmark Attributes Data set size

Chess (King-Rook vs. King) Data Set 07 28056
Abalone Data Set 09 4177
Car Evaluation Data Set 07 1728
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base constitutes a knowledge base and each meta-rules is the rela-
tionship between rules.
� The Induction Rules Mining Module The main role of this tool

is to continuously cluster new knowledge, communicate the
class that is supposed to be related to a given fact and finding
the relationship between rules to accelerate the inference
engine process. It is constituted by the two following
components:
– K-means-IR Algorithm: It clusters the rule base of the agent

and communicates the results to the Meta-knowledge base.
– K-NN-IR Algorithm: It consists to classify the new facts on

the appropriate clusters on the meta-knowledge base.
� The Inference Engine The inference engine performs a forward

or backward chaining on the rule base to ensure the reasoning
process. Before starting an inference cycle, the agent has to
localize according to the current fact the knowledge base of
the whole meta-knowledge base on which it will operate. Of
course the position of the concerned rules (the cluster of rules)
is provided by the Induction Rules Mining Module. First it trans-
forms the desired question to a rule form r without consequent
part, then it classifies r in one of the clusters (finding by K-
means-IR) of Meta-knowledge using K-NN-IR. Furthermore, it
selects just the cluster concerned of the rules in order to infer
them and finding a response to the new question.

For example: Let assume that a knowledge base of a Miner
Intelligent Agent containing the following rules:

� R1: IF (temperature = 20) And (outlook ¼ sunny) Then (practice_
sport = yes).
� R2: IF (outlook = overcast) And (humidity ¼ 80) Then (practice_

sport = yes).
� R3: IF (temperature = hot) And (wind ¼ light) Then (practice_

sport = no).
� R4: IF (wind = light) And (outlook = rainy) Then (umbrella =

yes).
� R5: IF (engine = diesel) And (wheel = 4) Then (vehicle = yes).
� R6: IF (wheel = 4) And (mark = audi) Then (vehicle = yes).

By applying k-means-IR on this small rule base, the
meta_knowledge base could be as follows:

By K-means-IR algorithm, and (K = 3):
Cluster 1 = (R1;R2).
Cluster 2 = (R3;R4).
Cluster 3 = (R5;R6).
Now, we suppose that the MIA will infer how can we practice

sport (yes or no), if the temperature is 30 and the humidity is 13,
such as the new fact ins is represented as:

ins = if (temperature = 30) and (humidity = 13).
For answering to the question, the MIA uses the knowledge base

and the meta-knowledge base to infer the class of this instance:
First, it classes Ins using KNN-IR to the appropriate class. The result
is the cluster 1. After that, it begins the inference on the closest rule
to ins in the same cluster. Let we consider R1 be this rule.

So, for inferring ins by the MIA, only R1 and R2 are used by the
inference engine, on the contrary to the classical cognitive agent
which will infer all the six rules of the rule base.
2 http://archive.ics.uci.edu/ml/datasets/Chess+%28King-Rook+vs.+King%29
3 http://archive.ics.uci.edu/ml/datasets/Abalone
4 http://archive.ics.uci.edu/ml/datasets/Car+Evaluation
8. Evaluation and Experimentation

8.1. Data benchmark adaptation

In this part, we build our knowledge set from three public dif-
ferent benchmarks (Asuncion & Newman, 2007), as shown in
Table 4. It includes in all 25,000 induction rules, all data sets are
transformed to induction rule sets, as the following example:

If (attribute1 ¼ value1) and (attribute2 ¼ value2) and . . .then
(attributen ¼ valuen) where n is the last attribute of the data set.

The first one is originally a big data set known as: Chess
(King-Rook vs. King) Data Set2 It contains 28056 instances with
7 attributes.

The second benchmark is known as: Abalone Data Set,3 it
contains 4177 instances with 9 attributes.

The third data set is known as: Car Evaluation Data Set.4 It con-
tains 1728 instances, with 7 attributes.

8.2. Evaluation pattern

Our benchmark as it is presented in the previous subsection(A),
is built from three different benchmarks. To evaluate the clustering
success rate, we fixed the parameter k of the clustering algorithms
at 3. Then after the clustering step, the three obtained clusters are
compared to the initial rule bases, if the clustering process is effi-
cient, the respective clusters should be identical. The success rate
is calculated using the following formula (Eq. (2)):

Success rate ¼
X3

i¼1

ncdi

npdi
; ncdðKBiÞ ¼ max

\
ðKBi;CjÞ

� �
=8j

¼ 1 . . . 3 ð2Þ

where:
ncri = number of correct rules from knowledge base i,
npri = number of pertinent rules from knowledge base i.
The number of correct rules of KBi ¼ maxðnumber rules
commonðKBi;CjÞÞ for all i and j in [1 . . .3].
The number of pertinent rules of a KBi ¼ The total number of its

rules.

8.3. Induction rules clustering experimentations

Fig. 3 shows how the execution time augments with the
increase of rules number for the k-means_IR using the three grav-
ity center formulas (UCI, IUC, and UIC). According to this figure, UCI
is slower than the two others. This is due to the fact that UCI uses
three operators (Union Intersection and Over) between the rules
and it requires a high complexity for computing the centroid. Fur-
thermore, UIC is more efficient in CPU time than IUC. We explain
this by the fact that union operator is faster than the intersection
operator. In UIC, the union operator is applied on the rules of the
same cluster after the intersection is performed only in the union
rule and the previous centroid. However, in IUC the intersection
is applied on all rules of the same cluster. Execution time of UIC
does not exceed 2200 ms, when the number of rules is 25,000
rules, even though UCI execution time is 2600 ms when the num-
ber rules is 25,000.

Fig. 4 shows the success rate, computed by the Eq. 2, with the
increase of rules number for the K-means_IR using the three
centroid computation formulas. According to this figure we remark

http://archive.ics.uci.edu/ml/datasets/Chess+%28King-Rook+vs.+King%29
http://archive.ics.uci.edu/ml/datasets/Abalone
http://archive.ics.uci.edu/ml/datasets/Car+Evaluation
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that IUC is less efficient than the two other formulas, so when
increasing the number of rules from 1000 to 25,000 rules, IUC suc-
cess rate is reduced from 93%, to 69%, even though UIC is reduced
just from 95%, to 84%.

From these results, it can be noted that the k-means IRC perfor-
mance (execution time and success rate) depends on the chosen
centroid formulas. So if we want to obtain the best performances
on both criteria: success rate and CPU time, UIC should be applied,
or UCI too, because it takes almost the same results of the first for-
mula. But we have to ignore IUC because it is less efficient than the
two other formulas on both the criteria. This is why we apply our
algorithm k-means_IR using the UIC formula, in order to compar it
with one previous algorithm based on similarity measure DIST1
presented previously. When comparing k-means_IR using the UIC
formula with k-means based on DIST1, on the cpu run time crite-
rion, the results in Fig. 5 are obtained.

Fig. 5 shows how the execution time augments with the
increase of rules number for the k-means_IR using UCI formula,
compared to the k-means based on DIST1 presented previously.
According to this figure, k-means_IR is faster than the other algo-
rithm. This is due to the fact that union operator is faster than
the intersection operator. In UIC, the union operator is applied on
the rules of the same cluster after the intersection is performed
only in the union rule and the previous centroid. However, in dist1
the intersection is applied on all rules of the same cluster two
times. Execution time of k-means_IR does not exceed 1800 ms,
when the number of rules is 25,000 rules, even though K-means
based on dist1 execution time is 1915 ms when the number rules
is 25,000.
Fig. 6 shows the success rate, computed by the Eq. (2), with the
increase of rules number for the K-means_IR using UIC centroid
computation formula and the previously presented algorithm
based on dist1. According to this figure we remark that there is
not a big difference between the success rate of the two
approaches, so when increasing the number of rules from 1000
to 25,000 rules, k-means based on dist1 success rate is reduced
from 99%, to 77%, even though k-means_IR is reduced just from
95%, to 76%.

When fixing the number of rules at 10,000, and increasing the
number of clusters, the success rate for the two algorithms are cal-
culated using the F-measure formula explained in Eq. (3):

F measureb ¼
ðb2 þ 1Þ � P � R

b2 � P þ R
ð3Þ

P ¼ TP
TP þ FP

; R ¼ TP
TP þ FN

ð4Þ

where P is the precision rate and R is the recall rate. TP is the num-
ber of true positives, TN is the number of true negatives, FP is the
number of false positives and FN is the number of false negatives.

The F-measure can be used to balance the contribution of false
negatives by weighting recall through a parameter b P 0. In our
case b is set to 0, F0 ¼ P. In other words, recall has no impact on
the F-measure when b ¼ 0, because increasing b allocates an
increasing amount of weight to recall in the final F-measure.

The obtained results are schematized in Fig. 7.
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Fig. 7 shows the success rate, computed using Eq. (3), with the
increase of the parameter K (number of clusters) for the K-mean-
s_IR using UIC centroid computation formula and the k-means
algorithm based on dist1. According to this figure we remark that
K-means_IR is more efficient than the first algorithm, so when
increasing the number of clusters from 3 to 40clusters, k-means
based on dist1 success rate is reduced from 77%, to 72%, even
though k-means_IR is reduced just from 82%, to 76%.

8.4. Experimentation of KNN-IR

In this part, we give some experimentations of the KNN-IR algo-
rithm based on the proposed distance formula using the bench-
mark described above. First, we labeled each rule base according
to the domain type. Which each label represents the specified
class. Then we divide the set of rules to two sets (training set
and test set). The training set is considered as the input of KNN-
IR. However, the test set is the set of rules that should be classified
by KNN-IR. Moreover, the percentage of the correct rules can be
computed as:

PCR ¼ jCRCj 	 jVSj:

where
PCR: represents the percentage of correct rules.
CRC: represents the rules classified correctly by applying KNN-IR.
VS: represents the test rules set.
Fig. 8 shows the number of correct rules changes according to the

parameter K. In general, it exists a slight difference between the
percentage proposal distance and dist1. Moreover dist1 and Dis-
t_clauses converges to the extremum maximum (78% and 76.5%)
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Fig. 8. Percentage of corrects rules according to the K parameter.
respectively when it exists the number K is 25. After this result,
we can say that the best value of K is 25 of the two distances. using
the previous benchmark. Of course, by changing the benchmark, the
K will be changed. Nevertheless, Fig. 9 prove the efficiency of our
proposal formula. It outperforms dist1 w.r in CPU Time. By increas-
ing the number of K from 5 to 100, the Dist_clauses’s cpu time does
not exceed 800 s, Or the dist1’s cpu time is 1100 s when the number
of K is 5 and exceeds 2700 s when the number of K is 100. Hence, we
can say that Dist_clauses is more appropriate then dist1.
8.5. The comparison of the MIA to the classical agent

In this section, we compare the performance of the proposed
architecture of multiple expertise intelligent agent to the classical
intelligent agent. So, when the classical agent intelligent infers all
the rule base at each arrival of a new fact, the multiple expertise
agent intelligent clusters the rule base and infers just the cluster
that contains the new fact. The obtained results are shown in Fig. 9.

The execution time for the two architectures of intelligent agent
are compared in Fig. 10, when increasing the number of induction
rules. We observe that the reasoning of classical agent is faster
than the MIA while dealing with small rule base (less than 7500
rules), and we explain this by the fact that the MIA has an addi-
tional time of the clustering step. But while dealing with a large
rule base, the MIA inferring is very fast in comparison to the clas-
sical agent inference. Moreover, when the classical agent deal with
a number of induction rules varying between 2500 and 25,000, the
execution time increases from 350 to 3912 ms whereas the
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execution time of clustering and inference of the Miner Intelligent
Agent increases just between 502 and 2997 ms.

When comparing the two architectures, we note that while
dealing with small rule base; the classical agent architecture is fas-
ter than the proposed one. We explain that by the fact that the
classic agent infers the small rule base immediately in order to
extract the new rules. In the contrary to the MIA that starts with
clustering the rule base, and then infer the cluster of rules that con-
tain the new fact, that is why it takes more time than the simple
agent while dealing with a small rule base.

But, while dealing with a big rule base (more than 7500), the
MIA inference is faster than the classical inference engine, and this
is due to the fact that the classical agent infers all the rule base. In
the contrary to the MIA that select only the interesting rules using
induction rules clustering, so it takes less time.

9. Conclusion

In this paper we presented a new paradigm of induction rules
mining. Our work is focused on the study of the two fields: the
clustering and the supervised classification. Also the algorithms
Knn-IR and Kmeans-IR are proposed by incorporating new
similarity measure and three gravity center computation formulas.
We have tested and compared the proposed algorithms with other
previous researches. The results are very satisfactory on both crite-
ria: CPU run time and the success rate. Furthermore, we integrated
the proposal support on the concept of intelligent agent. Hence the
emergence of the new architecture of the intelligent agent: called
(MIA) the Miner Intelligent Agent which allows to discover and
infer the new knowledge very quickly.

As future works, we will try to implement a new platform for
MIA called (Meta-Jad). The latter includes Meta-Jess to implement
the new proposal motor engine.

This innovation will also provide the birth of a new agents more
intelligent and faster than the classical ones, in order to reason on
the huge knowledge bases of our real life. In addition, our new
research will focus on the issue deducted from this work, like
association rule mining between knowledge, and to create a new
support of communication between these super intelligent agents
which will communicate only the very important knowledge
between them, instead of all basic data.

References

Asuncion, A., & Newman, D. (2007). Uci machine learning repository.
Berrado, A., & Runger, G. C. (2007). Using metarules to organize and group

discovered association rules. Data Mining and Knowledge Discovery, 14(3),
409–431.
Cao, L., Gorodetsky, V., & Mitkas, P. A. (2009). Agent mining: The synergy of agents
and data mining. Intelligent Systems, IEEE, 24(3), 64–72.

Chemchem, A., Djenouri, Y., & Drias, H. (2013). Incremental induction rules
clustering. In 2013 8th International workshop on systems, signal processing and
their applications (wosspa) (pp. 492–497).

Chemchem, A., Drias, H., & Djenouri, Y. (2013). Multilevel clustering of induction
rules for web meta-knowledge. In Advances in information systems and
technologies (pp. 43–54). Springer.

Drias, H., Aouichat, A., & Boutorh, A. (2012). Towards incremental knowledge
warehousing and mining. In Distributed computing and artificial intelligence
(pp. 501–510). Springer.

Eliasmith, C. (2013). How to build a brain: A neural architecture for biological
cognition. Oxford University Press.

Grzymala-Busse, J. W. (1997). A new version of the rule induction system lers.
Fundamenta Informaticae, 31(1), 27–39.

Guo, G., Wang, H., Bell, D., Bi, Y., & Greer, K. (2006). Using knn model for automatic
text categorization. Soft Computing, 10(5), 423–430.

Hahsler, M., Chelluboina, S., 2011. Visualizing association rules in hierarchical
groups. In 42nd Symposium on the interface: Statistical, machine learning, and
visualization algorithms (interface 2011). The Interface Foundation of North
America.

Han, J., Kamber, M., & Pei, J. (2006). Data mining: Concepts and techniques. Morgan
Kaufman.

Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: A review. ACM
Computing Surveys (CSUR), 31(3), 264–323.

Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification
techniques. Informatica, 31(3) (03505596).

Liao, Y., & Vemuri, V. R. (2002). Use of k-nearest neighbor classifier for intrusion
detection. Computers & Security, 21(5), 439–448.

MacQueen, J., et al. (1967). Some methods for classification and analysis of
multivariate observations. In Proceedings of the fifth berkeley symposium on
mathematical statistics and probability (Vol. 1, pp. 14).

Pal, N. (2007). Advanced techniques in knowledge discovery and data mining. Springer.
Poongothai, K., & Sathiyabama, S. (2012a). Efficient web usage miner using decisive

induction rules. Journal of Computer Science, 8(6).
Poongothai, K., & Sathiyabama, S. (2012b). Integration of clustering and rule

induction mining framework for evaluation of web usage knowledge discovery
system. Journal of Applied Sciences, 12(14).

Rocchi, P. (2003). The structural theory of probability: New ideas from computer
science on the ancient problem of probability interpretation. Springer.

Saneifar, H., Bringay, S., Laurent, A., & Teisseire, M. (2008). S 2 mp: Similarity
measure for sequential patterns. In Proceedings of the 7th australasian data
mining conference (Vol. 87, pp. 95–104).

Shen, W., Hao, Q., Yoon, H. J., & Norrie, D. H. (2006). Applications of agent-based
systems in intelligent manufacturing: An updated review. Advanced Engineering
INFORMATICS, 20(4), 415–431.

Steinbach, M., Ertöz, L., & Kumar, V. (2004). The challenges of clustering high
dimensional data. In New directions in statistical physics (pp. 273–309). Springer.

Strehl, A., Gupta, G. K., & Ghosh, J. (1999). Distance based clustering of association
rules. Proceedings ANNIE 1999, 9, 759–764.

Tuomi, I. (1999). Data is more than knowledge: Implications of the reversed
knowledge hierarchy for knowledge management and organizational memory.
In Proceedings of the 32nd annual hawaii international conference on systems
sciences, 1999. hicss-32 (pp. 12).

Wooldridge, M., Jennings, N. R., & Kinny, D. (2000). The gaia methodology for agent-
oriented analysis and design. Autonomous Agents and Multi-Agent Systems, 3(3),
285–312.

Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., et al. (2008). Top 10
algorithms in data mining. Knowledge and Information Systems, 14(1), 1–37.

http://refhub.elsevier.com/S0957-4174(14)00506-5/h0010
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0010
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0010
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0015
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0015
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0025
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0025
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0025
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0030
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0030
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0030
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0035
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0035
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0040
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0040
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0045
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0045
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0055
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0055
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0060
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0060
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0065
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0065
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0070
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0070
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0080
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0085
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0085
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0090
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0090
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0090
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0095
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0095
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0105
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0105
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0105
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0110
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0110
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0115
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0115
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0125
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0125
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0125
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0130
http://refhub.elsevier.com/S0957-4174(14)00506-5/h0130

	From data mining to knowledge mining: Application to intelligent agents
	1 Introduction
	2 Data mining overview
	2.1 Supervised classification
	2.2 Clustering data technique

	3 Related works
	4 Induction rules representation
	5 Mathematical preliminaries of induction rules mining
	5.1 Similarity measure
	5.1.1 Analyze and demonstration

	5.2 Gravity center computation

	6 Induction rules mining tasks
	6.1 Induction rules clustering
	6.2 Induction rules classification

	7 The Miner Intelligent Agent
	7.1 Architecture of the Miner Intelligent Agent

	8 Evaluation and Experimentation
	8.1 Data benchmark adaptation
	8.2 Evaluation pattern
	8.3 Induction rules clustering experimentations
	8.4 Experimentation of KNN-IR
	8.5 The comparison of the MIA to the classical agent

	9 Conclusion
	References


