A Parallel Approach for Decision Trees
Learning from Big Data Streams

Tonel Tudor Calistru®), Paul Cotofrei, and Kilian Stoffel

Information Management Institute, University of Neuchatel, Neuchatel, Switzerland
{ionel.calistru,paul.cotofrei,kilian.stoffel}@unine.ch

Abstract. In this paper we introduce PdsCART, a parallel decision tree
learning algorithm. There are three characteristics that are important to
emphasize and make this algorithm particularly interesting. Firstly, the
algorithm we present here can work with streaming data, i.e. one pass
over data is sufficient to construct the tree. Secondly, the algorithm is
able to process in parallel a larger amount of data stream records and can
therefor handle efficiently very large data sets. And thirdly, the algorithm
can be implemented in the MapReduce framework. Details about the
algorithm and some basic performance results are presented.

Keywords: Bigdata - Business datamining - Streams - MapReduce -
Decision trees

1 Introduction

Big Data has become the standard term referring the analysis of very large
collections of data. Traditionally, these large collections of data were produced
in the context of scientific applications e.g. physics, genomics or meteorology.
But once the applications in the domain of business and finance gained in inter-
est, an increasing amount of data was generated and collected in this context,
confronting the researchers with the difficulties of dealing with very large data
set. Finally, a third domain of great importance in the context of Big Data is
the domain of data streams, usually generated by all kinds of sensors, such as
mobile devices, remote sensors, radio-frequent identification (RFID), etc.

In this paper we are essentially interested in the intersection of the second
and third domain mentioned in the previous paragraph, i.e. data produced in
the context of business applications in form of streams. Today, the use of apps
on mobile phones has become one of the cornerstones at the interaction between
enterprises and their clients. These apps, together with the more traditional
web sites, produce data logs and other streams which, in volume, count for
the most important raw data sets gathered by the companies. Furthermore, the
combination of mobile apps and mobile phones containing sensor, such as GPS,
generates data in a strict business setting, having a lot of the characteristics
typical for a sensor network.

The MapReduce framework [1] has become the de facto standard for the
implementation of processes for analysing very large data sets in parallel, using

© Springer International Publishing Switzerland 2015
W. Abramowicz (Ed.): BIS 2015, LNBIP 208, pp. 3-15, 2015.
DOI: 10.1007/978-3-319-19027-3_1

4 I.T. Calistru et al.

distributed clusters. Its basic structure consists of two main steps: first a map-
step which essentially filters and sorts the data to be analysed, followed by a
reduce-step which essentially aggregates the data to be analysed. This simple
framework allows for great performance, but it is also quite limited in respect to
the algorithms that can be implemented in a straight forward manner. Motivated
by some business applications, we are particularly interested in decision tree
algorithms. But this category of algorithms is exactly one of those which cannot
easily be ported to the MapReduce framework, particularly if some of the specific
requirements for business applications have to be respected. In this paper we will
propose and analyse an approach allowing to implement decision tree algorithms
for big data streams in a MapReduce framework.

The remainder of the papers is organized in the following way. In the next
chapter we will present the arguments supporting the choice of decision trees
as the data mining algorithm of preference. Then we will describe how decision
trees can be used to analyse data streams and how this analysis can be integrated
into a MapReduce framework. Then we will present the details regarding the
implementation of our parallel decision tree algorithm followed by an analysis of
its performance, before to conclude and give some outlooks and future work.

2 Decision Trees for Mining Big Data

One of the most effective and widely used techniques in machine learning today
is decision tree learning. These models are popular not only because of their
adaptability and accurate prediction capabilities, but also because they can pro-
vide classification rules that may be easily interpreted by humans. This is a
particularly interesting property in the context of mining business data.

However, decision trees come also with some disadvantages. Traditional deci-
sion tree algorithms [2,3] have difficulties when the data does not fit into mem-
ory, because they have to recursively read the training data sets to construct
split decisions. Furthermore, numerical values need to be sorted in order to find
the splitting points of a specific node of the tree. To overcome these time and
memory consuming constraints several solutions have been proposed.

2.1 Related Work

One of the techniques used by learning decision trees algorithms is the pre-sorting
of attributes values, as in SPRINT [4] or ScalParC [5]. Alternatively, another
approach is to approximate the data, instead of sorting it, by using histogram
data structures, as in pCLOUDS [6], SPIES [7] and SPDT [8]. To build the
histograms, some authors use simply the frequency of data, where others (SPIES
and pCLOUDS) use sampling techniques. Another important difference lays in
the number of passes through the data needed, e.g. SPIES and SSE (a version of
CLOUDS) may need to pass several times over the data during the construction
process. Although the pre-sorting approaches are in general more accurate, they
may not be suitable for streams of data.

A Parallel Approach for Decision Trees Learning from Big Data Streams 5

Parallel Decision Trees Algorithms. The challenge of dealing with impor-
tant amounts of data was largely addressed by several parallel decision tree
algorithms such as described in [4-7,9].

In Amado et al. [10] and Srivastava et al. [9] four different types of paral-
lel decision tree algorithms have been described: horizontal, vertical, task and
hybrid approaches. In horizontal parallel decision trees, the entire data set is
split into subsets which are processed individually. In the vertical case, the set
of attributes is partitioned. Task parallelism enables the distribution of decision
trees nodes to be processed independently. The fourth type, hybrid parallelism,
is a combination of all three already mentioned approaches, i.e. in the first phases
of the decision tree growing process, vertical and horizontal parallelism are com-
bined, letting the task parallelism taking over at the end.

An example of a hybrid approach is Google’s PLANET [11], a technique that
applies horizontal parallelism (by implementing a MapReduce algorithm) at the
first few levels of the tree and applies task parallelism to the leaves, as soon as
the data fits into memory.

In [8] the authors use horizontal parallelism to build data histograms, which
are then merged to take decisions and to build the tree in a breadth-first manner.
Other examples of horizontal parallelism for building trees are gradient boosted
decision trees (GBDT [12]) or regression trees (GBRT [13]).

Based on SPDT, Li [14] proposes a random forest algorithm (SRF) with a
MapReduce implementation (similar to PLANET one): in the map phase the
local histograms are computed, while in the reduce phase the global histogram
enables the best split decision to be taken. However, in each iteration, when a
new level of the tree needs to be build, the complete data set (or a predefined
number of samples, if the data is too big) has to be read. This overrules the
single-pass constraint and makes it inadequate for a potentially infinite number
of records like in a data stream.

Decision Trees for Online Stream Mining. While most of the decision tree
algorithms available today are designed to enable the mining of data sets that do
not fit into memory, the extremely fast growth - in recent years - of the volume
of information that needs to be analysed rises the necessity of new techniques.
Ideally, these techniques would be able to continuously process streams of data,
without losing any valuable information [15].

The (theoretically) infinite number of records of data streams made the exact
determination of the best attribute to split impossible. This lead to the idea of
estimation of the best attribute. Due to the fact that this estimation needs
to be done in respect to the entire data stream, several techniques support-
ing the single-pass constraint as well as other data streams particularities [16]
have been studied [17-19]. These techniques include Hoeffding’s tree algorithm,
Very Fast Decision Tree (VFDT) and Concept-adapting Very Fast Decision Tree
(CVFDT). The Vertical Hoeffding Tree (VHT) classifier, introduced in [20],
utilizes vertical parallelism to extend the VFDT classifier. All these methods
were supported mathematically by the Hoeffding’s inequality [21].

However, in [22,23] the authors showed that the Hoeffding’s inequality is
not an adequate probabilistic model for the descriptions of ID3, C4.5 or CART

6 I.T. Calistru et al.

algorithms. They propose a new approach (inspired by [17]), called CART for
data streams (dsCART), which applies a Gaussian approximation to establish
the best attribute for splitting a tree node. One of the major results of dsCART
is that the selected attribute to split on in a considered tree node relative to
its data set, is the same, with some high probability, as the attribute chosen by
analysing the entire data stream [24].

2.2 The Parallel Approach for Data Streams

Following our interest in online mining of business data, we propose PdsCART,
a parallel approach to build the decision trees for inferring and predicting from
big data streams. We select the dsCART [24] decision tree algorithm for data
stream classification as the basis for our approach.

Our proposed solution is a method to adapt the dsCART algorithm to hori-
zontal parallelism by implementing the MapReduce programming model. While
several other horizontal parallel solutions have been mentioned already, like
SPDT, PLANET, SRF, GBDT, GBRT etc., to the best of our knowledge, none of
them have been applied to a single-pass decision tree for data streams algorithm.
More details about our approach are presented in the Implementation section.

3 PdsCART Implementation

In this section we describe PdAsCART, our approach to parallelise the dsCART
decision tree algorithm. To do this, first we introduce both dsCART! and
PdsCART decision tree algorithms for data streams, and then we detail our
MapReduce implementation. It is important mentioning that we are only inter-
ested in showing that very similar learning models may be achieved by treating
records in parallel, reducing this way the overall stream processing time.
Before presenting the pseudo-code, the following notes are important:

— for each attribute a’, the set of attribute values A’ is partitioned into two
disjoint subsets A% and A% such that A' = A7 U A%;

— the choice of A% automatically determines the complementary subset A%,

— the set of all possible partitions of the set A’ is denoted by V;.

- gé is the Gini gain computed for the attribute a’ in the leaf L.

- nf A,q is the number of elements from the k-th class in the leaf Ly, for which

the value of the attribute a’ is equal to a}, (a} € A?) .
k

— ng is the number of elements from the k-th class in the leaf L,

— the tie breaking mechanism (6) forces the split after some fixed number of
elements.

— the stopping condition formula is:

2Q (K
eG,K:zl,aﬁ, where Q (K) = 5K — 8K +4 (1)

Vn
and z(1_q) is the (1 —a)-th quantile of the standard normal distribution
N(0,1); K is the number of classes, n is the number of samples in the consid-
ered tree node.

1 We are following very closely the description of dsCART algorithm done by Leszek
Rutkowski, Maciej Jaworski, Lena Pietruczuk and Piotr Duda in [24].

A Parallel Approach for Decision Trees Learning from Big Data Streams

The dsCART Algorithm [24]

The PdsCART Algorithm

Inputs:

S is a sequence of examples,

U is a set of discrete attributes,

@ is one minus the desired probability of
choosing the correct attribute,

0 is the tie breaking parameter.

Output: dsCART decision tree

Inputs:

S is a sequence of examples,

U is a set of discrete attributes,

@ is one minus the desired probability of
choosing the correct attribute,

0 is the tie breaking parameter.

R is the number of reccords to process in
parralel

Output: PdsCART decision tree

Procedure dsCART(S,U, «, 0);

Let dsCART be a single leaf Ly (the root)
Let Uy = U;

/* Initialize counters in Lo with 0 */
np=0;

for each example s in S do
Sort s into tree leaf Lg;
for each attr. o' € U, do
a’, is the value of s for a’;
k is the class of s;
Increment nf_/_q;
end
Label L, with the majority class;
if L, has more than one class then
for each attr. o' € U, do
for each partition of the set A"
into A7, Ay do
‘Get 9q (AIL) using n?,/\.q ;

end
Let gifl = Ar;zé)‘(/i {E (ALL) }
end

Let a® = arg max {E};
a'eUq
Let a¥ = arg max {g},
ateUg\{a®}
Get eg,k using (1);
if (E* gy > EG,K) or (eg,x < 0)
then
Split L, on a®;
for both branches of the split do

Add a new leaf Ligs¢y1;
Let Upast+1 = Uq \ {a™};

Niast+1=0;
last = last + 1;
end
end
end

end
return dsCART

Procedure PdsCART(S,U, «a, 0, R);

Let PdsCART be a single leaf Lo (the root);
Let Uy = U;

Let Data be the list of examples read from
the stream;

Let T'Leaves be the list of tree leaves;

T Leaves.Add(Lo);

/* Initialize conters in Lo with 0 */
np=0;

for each example s in S do
Data.Add(s)
if Data.size == R then
Controller(Data, T Leaves, PdsCART)
Data.clear()
end
end
if Data.size > 0 then
Controller(Data, T Leaves, PdsCART')
Data.clear()
end
return PdsCART

Procedure Controller(data, leaves, tree)

/* Assign Data To Mappers */
job = Controller.Assign(data);
/* Call Map and Reduce */

job.Run(tree);
/* Collect Histograms for each tree leaf */
Controller.CollectHistograms();

for each leaf Ly in leaves do

Label L, with the majority class;

if L4 has more than one class then

for each attr. a* € U; do
for each partition of the set A* into
A}, AR do)

Get gq (A’L) using n’y"qu ;

i

end
L i = max 49q (A} ;
= e {7 (1)
end
T _ . - i .
Let a arg a?ledl,)f(q {gq},
Let a¥ = arg ~ max {%}
ateUg\{a®}
Get e,k using (1);
if (E— 94 > ec;‘K) or (eqg,x < 0)
then
leaves.Remove(Ly);
Split L, on a®;
for both branches of the split do
Add a new leaf Ligsi41;
Let Upast+1 = Ug \ {a”};
Niast+1=0;
leaves.Add(Ljgst+1);
last = last + 1;
end
end
end
end

8 I.T. Calistru et al.

3.1 Preliminary Considerations

Following the dsCART algorithm it is easy to see that the most time consuming
phase is to find the best split decision; for each attribute in the current node,
we must compute the Gini gains in respect to all possible partitions of the set of
attribute values. It is important to keep in mind that all these operations take
place for each and every new sample that is read from the data stream.

Secondly, we recall here that in [24] has been proven that the attribute chosen
in a considered node, according to its current data, is the same one, with high
probability, as the one selected after reading the entire data. This means that
no matter when these estimations are made, they chose, with some probability,
the same attribute.

All these facts motivated us to compute and check the splitting conditions
after reading a variable number of samples, while processing them independently.
By choosing a sufficiently high probability (o parameter), our algorithm is able
to produce very similar (compared with dsCART) decision trees, with the same
level of accuracy but with faster processing times. The parallel approach of
PdsCART algorithm is detailed in the following subsection, while a summary of
the results using this algorithm are given in the Experiments section.

3.2 The MapReduce Implementation

In our version of the distributed PdsCART decision trees, we apply the MapRe-
duce paradigm by using a horizontal partitioning approach.

The controller process coordinates the tree growing, while the mappers and
reducers processes fulfill their standard tasks. Assuming that we have P mappers
and we want to consume R records in parallel, the controller will assign to each
mapper R/P records to process.

! Stream records

R~ the number of records to
process In parallel IF Data.Size =R

YES

| Mapper ‘ | Mapper |_>Lcca\HIslograms

\ o /

=z
8
]
3
-1

Hadoop Job

[meducer] [meducer] — > Global Histograms

Controller. CollectHistograms()
Controller.ComputeSpitPoints()
&

Grow the Decision Tree

according!

Fig. 1. The PdsCART algorithm logic schema.

A Parallel Approach for Decision Trees Learning from Big Data Streams 9

In order to keep track of the number of distinct elements for each attribute
and class, PAsCART uses some simple data frequency structures, as histograms,
which are easy to merge in order compute the Gini gain functions. For each leaf
node in the tree, each mapper will build its own local histograms. During the
map phase, each input record it is assigned to a leaf node and it is inserted in the
corresponding mapper local histogram. The reducers receive from the mappers
all the local histograms and merges them into global histograms, one for each
leaf node of the tree. The result is serialized into an output file. Given this
output file, the controller can then perform a single pass over the leaves global
histograms, estimate the best splitting attributes and decide whether to grow
the tree in respect to the splitting conditions of each of the tree leaf nodes.

The Map procedure, described in the Map algorithm, receives the current
version of the tree as well as a set of records. For each record, the tree is traversed
in order to find the corresponding leaf node id. Based on the node id, the mapper
updates its dedicated local histogram with the new input record. Once the last
record is processed the mapper emits, for each leaf node, the local histograms
and their related tree node id.

The Reduce procedure, described in Reduce algorithm, merges all the local
histograms received from the mappers and builds the global ones. The result is
exported to the output file.

Map Algorithm Reduce Algorithm

Inputs: Inputs:
tree : current decision tree; (key, values) pairs emitted by Mappers
records : data assigned to the current mapper and grouped by the key;

Output: (key, value) pairs for each leaf;
key: the id of the leaf node;
value: the corresponding local histogram

Output: (key, value) pair
key: the id of the leaf node;
value : the global histogram - merged

Procedure MAP (tree, records)
HistoMap<+— local histograms map;
while records.readNexztRecord() do
sample <— SplitRecord(record, delim);
nodeld «— tree.Traverse(sample);
HistoMap.Add(nodeld, sample);
end

for each nodeld in HistoMap do
histogram <— HistoMap(nodeld);
emit(nodeld, histogram);

end

Procedure REDUCE (key, values)

leafld <— key;

globalHistogram<+— the global histogram

for the current key(leafId);

for each histogram in values do
globalHistogram.MergeHistogram (leafld,
histogram);

end

emit(leafld, globalHistogram);

With a single iteration of the output file, the controller can now compute the
first and the second best attribute, as well as their related Gini gains, for each
and every leaf node in the tree. The PdsCART algorithm can now move forward
to compute the splitting conditions, according to the formula (1) and/or 6 tie
breaking parameter, and to split the leaf nodes if necessary.

In the Experiments section we will show that as, in our approach, the compu-
tations of attribute estimation occur quite rarely - only after a larger number of
samples are read and processed in parallel from the stream - the overall time of
stream processing decreases (compared to dsCART') while the learned decision
trees remain similar.

10 I.T. Calistru et al.

4 Experiments

This section summarizes several results of our experiments. As previously under-
lined, our parallel approach for decision tree learning from data streams is
designed to achieve similar results as the dsCART algorithm. In fact, in all
our tests, when running with a sufficiently high « value and with the same test
settings (except the number of records processed), we have obtained exactly the
same decision trees with the same level of accuracy as with the dsCART imple-
mentation. Due to this fact, we do not need to benchmark the differences in
accuracy between learned models. Instead, we would like to emphasis some the-
oretical and practical performance gains obtained by implementing our solution,
by processing, in parallel, more than one record at once.

To do so, we first describe our experimental scenarios as well as the details of
the datasets that we have considered, then we present the results of PdsCART
implementation.

4.1 Experimental Scenarios

While it is intuitively that handling a larger number of data records in paral-
lel reduces the processing time, several other aspects have been considered in
order to validate our parallel approach. Some of the aspects that we have taken
into consideration, besides the running time, include: the number of records to
consider per iteration, the number of attributes and the number of bins?. Other
aspects, such as the decision tree size, the o parameter and the dependency
relations between all these aspects may be considered for a future work as well.

Table 1. The specifications of the datesets used in our experiments.

| Data Set | # records Attributes | Classes | # type

1 Dy 10 thousands | 5 2 synthetic
2 | Dy 500 thousands | 70 5 synthetic
3 | D3 1.5 millions 20 10 synthetic
4 | Dy 4 millions 10 5 synthetic
5 | Ds 4 millions 15 2 synthetic
6 D* 4.8 millions 34 20 web data

All these different parameters do not act independently. To evaluate how they
relate to each other, we have considered 5 synthetic and one real world web data
sets. The synthetic ones were generated using MOA (Massive Online Analysis
software environment [25]), while the web one is the KDD CUP 99’ data set?,

2 The standard method of dividing the range of numerical attributes values into bins.
3 http://archive.ics.uci.edu/ml - for simplicity we have considered only the numerical
attributes.

http://archive.ics.uci.edu/ml

A Parallel Approach for Decision Trees Learning from Big Data Streams 11

which was also used to benchmark the dsCART algorithm. Their characteristics
are listed in Table 1. In all our tests, the 6 tie breaking parameter was not taken
into consideration.

4.2 Experiment Results

A first set of results, presented in Table 2, shows the improvement of PdsCART
running times, compared with dsCART (first line in the table), while producing
exactly the same trees and accuracy.

Table 2. Running time(ms) and accuracy for D1, Ds, D*datasets with different # of
incoming records processed in parallel. #1 is the dsCART algorithm.

D Ds D*
Records | Accuracy | Time | Records | Accuracy | Time Records | Accuracy | Time

1 83.11% |11.44 1 84.94% |5076.77| 1 7% 9106.35
20 83.11% 2.10 | 200 84.94 % 318.68 | 200 7% 409.98
40 83.11% 1.56 | 400 84.94 % 253.71| 400 77T % 297.19
60 83.11% 1.35| 600 84.94 % 215.75| 600 7% 250.04
80 83.11% 1.23 | 800 84.94 % 183.67 | 800 7% 227.55

Table 2 contains some of the our most important results that leaded to PdsCART
algorithm. As we can see in the Accuracy column, even if the number of exam-
ples taken into consideration for computing the splitting points increases, the
accuracy remains the same. This is exactly the property needed to realize the
parallel algorithm. Using this characteristic, the execution time of PsdCART
can be reduced as can be seen in Time column. This results are confirmed by
other tests as well (see Fig. 2).

The faster processing times are obtained mainly because of the fewer splitting
conditions computations. For example, for D, dataset, having 4 millions records,
when processing 200 records at time, there are 20 000 splitting computation
steps, while when processing 800 records, there are only 5000.

While it might be tempting to choose a very large number of records to be
processed in parallel, we have to underline here its side effect as well: the larger
the number of records is, the later the algorithm will catch the decision tree
changes / splits. Later refers here to the stream records occurrence time and not
necessarily to the overall processing time. For example, for business applications
that need to have a very responsive prediction model, where the changes in
the stream need to be detected and processed immediately, a lower number of
records would fit better; for other applications that can afford to have the same
prediction model without caring about the amount of stream records consumed,
larger number of records may conduct to better processing times.

12 I.T. Calistru et al.

- D2
440
a]a09.98 &~z
A

= 220

180
160

96.81

1.8 4
71.85 65.65

600 records
#Records

200 records 400 records 200 records 1000 records

Fig. 2. Running time(ms) per dataset with different # of incoming records processed
in parallel.

Detecting the splitting points earlier may facilitate the computations, since
the new leaves will have fewer records to take into account for the future splitting
conditions computations. This may justify why the differences between process-
ing times with larger number of records (1000 vs. 800) is significantly smaller
than with fewer number of records (400 vs. 200).

Table 3. Running time(ms) per dataseta having different # of attributes.

| Data Set | TreeDepth | TreeNodes | TreeL.eaves | # Attributes | Time
1 | Da, 2 3 2 2 19.59
2 | Dsq 5 29 15 5 66.54
3 | D1oa 10 213 107 10 259.651
4 | D20a 20 5501 2197 20 1610.75

However, in Fig. 2 we can see that while Dy and D5 synthetic datasets have
the same number of records, the running times of D4 are considerable better than
those of D5, under the same tests settings. This is related this time with another
aspect that it is worth mentioning: the number of attributes. Intuitively, more
attributes a dataset has, more time it will be needed by the algorithm to process
it. Table 3 shows the results obtained after processing 4 synthetic datasets, all
of them having 4 millions of records but different number of attributes.

Another result is related to the splitting computing times. When checking
or selecting the splitting attributes, the PAsCART algorithm has to consider all
possible partitions of the set of attribute values. This is directly related to the

A Parallel Approach for Decision Trees Learning from Big Data Streams 13

Table 4. Running time(ms) per dataset using histograms with different # of bins.

| Data Set | 2 bins |4 bins | 6 bins | 8 bins | 10 bins
1 | Dy 73.28 | 77.41| 82.36| 89.40| 98.63
2 | Ds 79.96 | 83.70| 90.97|100.22|111.77
3 | Dy 145.55 | 153.22 | 167.28 | 204.38 | 229.88
4 | Ds 151.89 | 166.16 | 190.98 | 250.27 | 313.59

number of bins used in the histograms. As we can see in Table4, the more bins
a histogram has, the more time will be needed to evaluate all the partitions.
This property may lead to another level of parallelization, where all partitions
may be analyzed independently. We are considering this as a solid basis for our
future work.

Although these are just a subset of all the experiments conducted, they should
prove the potential of our algorithm.

5 Conclusion and Future Work

In this paper we have shown how to implement a decision tree learning algorithm
in the MapReduce framework. The first achievement of this algorithm is to be
able to produce the decision tree in one single pass over the data. This is crucial
in the context of streaming data, were multiple passes over the same data set
are very difficult or even impossible. A second important achievement is the
performance of the implementation. We were able to show that the algorithm
achieves very good results by treating in parallel a larger number of records.

This encouraging results provide a solid basis for the ongoing work. In par-
ticular it is necessary to analyze how the algorithm scales with an increasing
number of processing units and in which way all other parameters are influenc-
ing the behavior of the algorithm. Performance-wise, the outcome is relatively
easy to guess. However more work has to be done in order to asses the influence
of these parameters regarding the quality of the decision trees. We know that we
can achieve similar error rates as the other algorithms (e.g. C4.5). Some other
parameters regarding the trees such as size, depth, order of attributes, will have
to be further investigated as well.

References

1. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.
Commun. ACM 51(1), 107-113 (2008)

2. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression
Trees. Chapman & Hall/CRC, New York (1984)

3. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers Inc., San Francisco (1993)

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

I.T. Calistru et al.

Shafer, C., Agrawal, R., Mehta, M.: SPRINT: a scalable parallel classifier for data
mining. In: Proceedings of the 22th International Conference on VLDB, pp. 544—
555 (1996)

Joshi, M., Karypis, G., Kumar, V.: ScalParC: a new scalable and efficient paral-
lel classification algorithm for mining large datasets. In: Proceedings of the 12th
International Parallel Processing Symposium, pp. 573-579 (1998)

Sreenivas, M., Alsabti, K., Ranka, S.: Parallel out-of-core divide-and-conquer tech-
niques with applications to classification trees. In: The 10th Symposium on Parallel
and Distributed Processing, pp. 555-562 (1999)

Jin, R., Agrawal, G.: Communication and memory efficient parallel decision tree
construction. In: Proceedings of the 3rd SIAM International Conference on Data
Mining (SDM), pp. 119-129 STAM, (2003)

Ben-Haim, Y., Tom-Tov, E.: A streaming parallel decision tree algorithm. J. Mach.
Learn. Res. 11, 849-872 (2010)

Srivastava, A., Han, E., Kumar, V., Singh, V.: Parallel formulations of decision-tree
classification algorithms. Data Min. Knowl. Discov. 3(3), 237-261 (1999)

Amado, N., Gama, J., Silva, F.: Parallel implementation of decision tree learning
algorithms. In: Brazdil, P.B., Jorge, A.M. (eds.) EPIA 2001. LNCS (LNAI), vol.
2258, pp. 6-13. Springer, Heidelberg (2001)

Panda, B., Herbach, J., Basu, S., Bayardo, R.: PLANET Massively parallel learning
of tree ensembles with MapReduce. In: Proceedings of VLDB-2009 (2009)

Ye, J., Chow, J.-H., Chen, J., Zheng, Z.: Stochastic gradient boosted distributed
decision trees. In: Proceedings of the 18th ACM Conference on Information and
Knowledge Management, pp. 2061-2064 (2009)

Tyree, S., Weinberger, K.Q., Agrawal, K., Paykin, J.: Parallel boosted regression
trees for web search ranking. In: Proceedings of the 20th International Conference
on World Wide Web, pp. 387-396. ACM (2011)

Li, B., Chen, X., Li, M.J., Huang, J.Z., Feng, S.: Scalable random forests for massive
data. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD 2012, Part I.
LNCS, vol. 7301, pp. 135-146. Springer, Heidelberg (2012)

Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: A new method for data
stream mining based on the misclassification error. IEEE Trans. Neural Netw.
Learn. Syst. 26(5), 1048-1059 (2014)

Li, X., Barajas, J.M., Ding, Y.: Collaborative filtering on streaming data with
interest-drifting. Intell. Data Anal. 11(1), 75-87 (2007)

Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the
6th ACM SIGKDD Conference, pp. 71-80 (2000)

Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In:
Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 97-106 (2001)

Bifet, A., Holmes, G., Pfahringer, G., Kirkby, R., Gavalda, R.: New ensemble
methods for evolving data streams. In: Proceedings of the 15th ACM SIGKDD
International Conference Knowledge Discovery and Data Mining (2009)

Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: DATA STREAM MINING:
A Practical Approach. University of Waikato, New Zealand (2011)

Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58, 13-30 (1963)

Rutkowski, L., Pietruczuk, L., Duda, P., Jaworski, M.: Decision trees for mining
data streams based on the McDiarmid’s bound. IEEE Trans. Knowl. Data Eng.
25, 1272-1279 (2013)

23.

24.

25.

A Parallel Approach for Decision Trees Learning from Big Data Streams 15

Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: Decision trees for mining
data streams based on the gaussian approximation. IEEE Trans. Knowl. Data Eng.
26, 108-119 (2014)

Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: The CART decision tree
for mining data streams. Inf. Sci. 266, 1-15 (2014)

Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis.
J. Mach. Learn. Res. 11, 1601-1604 (2010)

	A Parallel Approach for Decision Trees Learning from Big Data Streams
	1 Introduction
	2 Decision Trees for Mining Big Data
	2.1 Related Work
	2.2 The Parallel Approach for Data Streams

	3 PdsCART Implementation
	3.1 Preliminary Considerations
	3.2 The MapReduce Implementation

	4 Experiments
	4.1 Experimental Scenarios
	4.2 Experiment Results

	5 Conclusion and Future Work
	References

