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ABSTRACT

Motivated by the successful application of Local Binary Pattern (LBP), in this paper we propose a novel pixel
neighborhood differential statistic feature for pedestrian and face detection based on the multiple channel maps.
The calculation of LBP comprises of two steps, Pixel Differential Feature (PDF) calculation and PDF sign
encoding. The PDF distills discriminative information of local region that can improve the performance of the
pedestrian detector, but the encoding step degrades the performance due to the quantization error. Although
PDF is more discriminative than original channel maps, it has a much higher dimension than the original
feature maps, and consequently requiring large computation cost. To address this issue, the pixel neighborhood
differential pattern is learned with both supervised and unsupervised learning methods, which allow discovering
discriminative pixel differential patterns in local area and achieving state-of-the-art results. Specifically, our
method firstly aggregates the image channel maps into cell maps with max pooling. Then, pixel neighborhood
differential feature based on each channel cell maps are calculated which contributes to encoding discriminative
information in each local area and benefits the performance improvements. In addition, we attempt to learn
discriminative differential statistic patterns by using linear discriminative analysis (LDA) and principle
component analysis (PCA) for further performance improvement. Two sets of experiments are conducted on
pedestrian detection and face detection respectively. The INRIA, Caltech, and ETH datasets are used for
pedestrian detection, and the FDDB and AFW datasets for multi-view face detection. The experimental results
show that our method achieves superior performance in comparison with the state-of-the-arts while running at
20 fps for 480x640 images.

1. Introduction

By contrast, the latter learns discriminative feature from the training
data using Deep Learning models [5] or by constructing a set of over-

As a representative for the object detection problem, human
detection is an active topic in computer vision. It poses great challenges
due to large variability in deformation, illumination and occlusion
present in images. In recent years, a great amount of attention has been
paid to real-time human detection in applications such as vehicle
autonomous driving, video surveillance and human activity under-
standing.

Despite a large body of work devoted to human detection in the last
decades, it is still an open problem. Existing state-of-the-art methods
[1-3] can be roughly categorized into two groups, those using hand-
crafted features [4] versus those using data-driven features [5,6]. The
former comprises of a set of manually designed features that are
suitable for human detection, such as HOG [7], LBP [8], color
descriptor [9], ICF [4], ACF [10], LDCF [11] and IHF [12,13], etc.
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complete dictionaries to encode the human parts [6]. Albeit computa-
tionally effective, the hand-craft features are not optimized for the
human detection tasks. By contrast, the learned deep feature using
Deep Learning models, such as CNN [14] or DBN [15] is very
discriminative, but demands high computational costs. In this paper,
a new pixel neighborhood differential statistic feature is proposed to
discover the discriminative local variation patterns for the human
channel maps. Compared with state-of-the-arts, the proposed feature
exhibits solid advantage in computation efficiency, training speed and
discriminating power. In particular, it runs at 20 fps for pedestrian
detection for images of size 480x640.

In this paper, we first revisit the LBP feature [16] and demonstrate
the connection between our proposed feature and CNN model. Then we
present our proposed method with four different filtering schemes,
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which can be further improved to learn discriminative patterns in both
supervised and unsupervised learning framework. The final evaluations
of the proposed feature on the public benchmarks reveal that our
method achieves state-of-the-art results for both pedestrian and face
detection tasks.

The contribution of our work is four-fold as follow:

1. We investigate the connection between our methods and the CNN
model and demonstrate that our method can be viewed as a
simplified one-stage CNN which achieves state-of-the-art results.

2. We propose a multi-scale pixel neighborhood differential feature
with four different filter schemes, which is aiming at mining the
underlying discriminative information to obtain the intrinsic struc-
ture of the pedestrian.

3. We propose an unsupervised feature learning method to reduce the
redundancy of the pixel local differential feature. Meanwhile, we
discover discriminative differential statistic patterns for improving
both the accuracy and efficiency of pedestrian detection.

4. We propose a supervised feature learning approach which produces
compact and informative feature.

The rest of the paper is organized as follows. After reviewing the
related work in Section 2, we elaborate our method in Section 3. Next
we provide comprehensive experimental evaluation on public bench-
marks of pedestrian and face detection in Section 4. The paper is finally
concluded in Section 5.

2. Related work
2.1. Local Binary Feature (LBP)

LBP is a widely and successfully used descriptor for texture
classification, face detection and recognition, etc. It encodes the
difference between the referred center pixel and its surrounding
neighborhood in a circular sequence manner, and represents the local
image patch as a binary string. Roughly speaking, a LBP feature
characterizes the local spatial structure of image, as formulated in
Eq. (1).

= 1x>0
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where p, is one of the N neighbor pixels around the center pixel p., on a
circle with radius r or a square with side length r. LBP is built on point-
wise coding of the image intensities in the local region and thus is
sensitive to local texture variation. The computation of LBP feature
mainly comprises of three steps (shown in Fig. 1). First, the Pixel
Differential Feature (PDF) a for each reference pixel is calculated,
which yields an 8 dimension PDF descriptor (Fig. 1(a)). Second, a non-
linear gating function S (a) is employed for mapping the PDF descriptor
to a binary vector x of the same size (Fig. 1(b)). Finally, all these binary
string bits are merged into an integer b by encoding function C (x)
(Fig. 1(c)).

Fig. 1(d) gives an example of generating a pattern for one pixel in a
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3x3 local area. In particular, the non-linear gating function and
encoding function are respectively defined asS(a) = {(1) Z : 8, and
C(x) = wlx, wherew = [2°, 2, ... ,27].

There are two key parameters in LBP computation, the stride
between two different sampling pixels s and the pooling radius r for
each pixel. In Fig. 2(a), the sampling stride s equals to 4 and in
Fig. 2(b), the radius r equals to 2. Fig. 2(c) shows a multi-scale LBP
with different radius r=1, 2, 3 simultaneously. In each radius r, we only
consider 8 different orientations for raw PDF calculation. For an image
of size W x H, LBP feature is extracted from (W — r) X (H — r)/(s*s)
different anchor pixels, where each one is in a block with 3 x 3 pixels.

2.2. Revisiting LBP

In this section, we explore LBP feature from a different viewpoint.
We treat LBP as similar to the structure of a one-stage CNN that
consists of convolution, Recitation Linear Unit (ReLU) and pooling
operations. The procedure of calculating LBP feature on a human
image is shown in Fig. 3. Firstly, the input image is a color image with
three RGB channels, which is performed convolution operation with a
3 x 3 x 8 filter bank. Each filter reflects the variation direction between
referenced point and its surrounding points. Then, the filtered result is
fed into a ReLU operation, which is used to cut off the negative values
to zero. Next, a pooling step is applied to encode the positive values to 1
and O for others. This operation only keeps the sign of the filtered
result. Finally, the binary codes are transformed into integers by a
convolution operation. The filter in the last stage is an 8x1 vector
[20, 2!, ... ,27]". The LBP can be treated as a swallow CNN with only one-
layer and no Fully Connected (FC) layers. Besides, the conventional
LBP feature significantly differs from this swallow CNN in its fixed
weights in each stage. It does not involve in any model training with BP
algorithms.

3. Our method

Our method is motivated by the close correlation between the CNN
model and state-of-the-art hand-crafted features, e.g., SIFT, HOG and
LBP. These hand-crafted features can be used as input for the CNN
model at the first layer and the following operations can be concate-
nated to them which lead to much deeper structure. In our imple-
mentation, we use ten channel features as input, which include the
LUV color channels, six gradient orientation channels and a magnitude
channel. It is observed that the superior performance for almost all the
hand-craft features can be achieved by simply adding one layer CNN
operations based on the channel maps. In the following section, we
introduce four different filter banks which are applied to the channel
feature maps.

3.1. Pixel neighborhood differential feature

3.1.1. Local Pixel Differential Features (LPDF)
The LBP feature allows encoding the local structure in the image
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Fig. 1. PDF and LBP computation procedure. ((a—c) Computation procedure of LBP; (d) A toy sample for a single pixel).
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Fig. 2. Stride of LBP, radius of LBP and LBP with three different radius.
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Fig. 3. different view of LBP operator.

with sufficient discriminating power to distinguish between different
but similar image patches. Inspired by the success of the LBP, we
impose raw LBP on the channel maps and observe significant
performance drop (average miss rate about 5% higher than ACF on
the INRIA dataset). With a deep insight into the LBP generation
process, only partial order information is adopted and the pixel values
of the filtered channel map is discarded in the last two steps
(linearization and coding steps) of LBP computation. By removing
the last two steps and using the filtered channel maps as our local
differential features, the performance gain is reported with a average
miss rate about 2% lower than ACF on the INRIA dataset, which
indicates the partial order information insufficiently encodes the
discriminative information of the pedestrians.

As shown in Fig. 4, the procedure of generating local differential
feature is analogous to the CNN structure comprising a series of
pooling and convolution steps. Nevertheless, the filter in the CNN is
retrained many times for deriving the optimal weights. In our cases, the
filter is fixed with simple horizontal, vertical and diagonal differential
filters. As the filter bank in CNN plays a criterial role in the detection
performance, they should be carefully chosen and designed in our
scenarios. Toward this end, we present following three filtering
methods which aim to discover useful discriminative information for
pedestrian detection.

3.1.2. Symmetrical Pixel Differential Features (SPDF)

As shown in Fig. 5, the filter bank of LPDF only uses the eight
differential values of the surrounding eight pixels around its center
pixel. However, in terms of the average channel map of pedestrians, it

Pooling

—

128x64x3

128x64x10

MxNx10

is readily observed that the 45 and 135 degree slops at the left and right
shoulders are very discriminative areas. Therefore, more discriminative
information is encoded in the symmetric pixel differential feature in the
horizontal, vertical and diagonal directions across the center pixel,
which we term SPDF for short. Fig. 6 gives the procedure of calculating
SPDF. It is shown that the 12-dimension SPDF encodes additional
symmetric information across the center pixel, compared with the 8-
dimensional LPDF descriptor.

3.1.3. Circular Pixel Differential Features (CPDF)

In addition to the above mentioned feature, we also consider a
circular pixel differential feature, which captures the information of
surrounding pixels such as human head. As shown in Fig. 7, with the
same size of LPDF, CPDF focus on its left-right or top-down positioned
neighbor pixels instead of the center pixel.

3.1.4. Total Pixel differential Features (TPDF)

By comparing the three aforementioned features, one can see that
none of them captures the pairwise relationship among arbitrary two
pixels in a local area. Thus motivated, we propose the Total Pixel
differential Features (TPDF) that generalizes the pixel differential
feature. Specifically, when r =1, 2, 3 the dimensions K of the TPDF
are computed as C¢ = 36, C% = 300 and C} = 1170 respectively. Taking
into account all the scenarios described above, the three features can be
viewed as the special case of TPDF. In this paper, we only consider two
scenarios with radius r =1, 2 for the sake of affordable memory size.

3x3x8

MxNx8x10

Fig. 4. Procedure of calculating local differential features.

129

Jaded awraadedaayy
EE}. E Rk aniainkay



J. Shen et al.

Q| a4 || %
PDV
a, || a || a q

& — &
&L
a,—a,
@ —a,
a,—a,
as—a,
as,—a,
a;—a,

Pattern Recognition 63 (2017) 127-138

Fig. 5. Local Pixel Differential Features.

3.1.5. Comparison of different top pixel neighborhood differential
feature

In our comparative study, we evaluate four features trained and
tested on the INRIA dataset. Besides, different filter banks are learned
based on the AdaBoost learning framework. Fig. 8 demonstrates the
four top PDF features corresponding to the depth-2 decision tree
classifier selected by the AdaBoost algorithms. The top left corner in
each window shows the corresponding channel index, and the top left
corner of the inner black rectangle in this window indicates the bin
index of PDF based feature accordingly. The red and green boxes
indicate the position of pixels in the corresponding local area of the
channel map. It is observed that the most discriminative channel
includes 1, 2, 4, 5 and 6 respectively corresponding to the LU channel
of LUV color space, gradient magnitude channel and 90 degree
gradient orientation channel.

As shown in Fig. 8, the most discriminative areas focus on the
shoulders, legs and feet which agree with our human perception. In
terms of LPDF, SPDF and CPDF, the first selected features are mainly
distributed around the feet area in the channel 5. By contrast, their
TPDF counterparts transferred to the head area in the channel 1. This
can be explained by more discriminative information encoded in the
TPDF than the other ones.

3.1.6. Explanation on the effect of our feature

In order to demonstrate the fundamental rational behind these
pixel differential feature, we visualize the average filtering results of
LPDF on the training data due to its relatively low dimension, as shown
in Fig. 9. The left column with red bounding box indicates the average
channel map on the positive training data, while the right eight
columns offer the filtering result for each filter. As can be seen in
Fig. 9, the details of the human shape are highlighted, which implies
that our proposed feature can capture more discriminative information
for the pedestrians. It apparently works in the magnitude and gradient
angle channels. Meanwhile, our approach can also be seemed as a
feature space transform which is used for mapping the original feature

PDV
a, || a || @ | e %

space to a more readily separable space.

3.2. Pixel Differential Pattern Learning

In the previous section, we have introduced four different PDFs
which can all be trained in the AdaBoost learning framework.
Apparently, there’re only a small number of variations in each local
area, to reflect the structure of the image. Therefore, a natural idea
arises to reduce the dimension of the PDF. In this paper, we aim to
learn discriminative PDF patterns in both the unsupervised and
supervised learning framework, which will be illustrated in the follow-
ing section.

3.2.1. Unsupervised PDF pattern learning

Considering the local variation in a specified position, it is a
standard practice to employ PCA for obtaining the major variation in
the feature space. Suppose b is the number of blocks in a detection
window, 7 is the number of scales, C is the number of channels for the
feature map (C=10 in this paper), K is the dimension of PDF, then the
dimension of this multi-scale local differential channel map is
KxnxbxC.

In this paper, two different methods are exploited for dimension
reduction, which are shown in Fig. 10. One performs dimension
reduction on each channel separately (Fig. 10(b)), while the other
one operates on all the channels as a whole (Fig. 10(a)). The former one
aims to reduce the feature dimension from K x n x b x Ctod x b x C
for each channel and each pixel, which we name pixel-wise PCA (Pi-
PCA). The latter one is to reduce the dimension of K X n x b x C to
d x b for all pixels with C channel features concatenated altogether,
which we coin channel-wise PCA (Ch-PCA). It reveals that Pi-PCA
contributes to the performance boost for the detector due to the
transformation of original feature space to new orthogonal spaces
found by the PCA. For example, the dimension of LPDF K for
pedestrian equals 8. As shown in Fig. 10, b = W x H, D’=DxC, where
W=14, H=30, D=K, C=10, d=2 and d’=20.

Fig. 6. Symmetrical local differential feature.
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Fig. 8. Top one selected pixel neighborhood differential feature. ((a) Top left three windows for LPDF, (b) Top right three windows for SPDF, (c) Bottom left three windows for CPDF,

(d) Bottom right three windows for TPDF).

Suppose there are N training images {I,}\_;, I, € R**"*3, and the
channel maps for the training image are represented as {M,}\_,,
M, € R*WxH where w, h, C, Wand Hare the width and height of raw
input image, the number of channels, the width and height of channel
map respectively. For each channel map, we extract local differential
vector with radius 7, and the result is denoted as X;; € RXC, where K=8,
C=10 for LPDF. The x;; is a KC dimension local differential vector,
where i is the index of the training image, j is the index of blocks in an
image and there’re b local differential vectors totally in one image. So i
image can be represented as a matrix X; = [X; |, X2, ... -%;,]’ . Thus, the
training feature are obtained by concatenating all the Ninput images
together, which can be formulated in Eq. (2)

= [Xi, %, ... Xy] € RKON

e))

By only considering the L filters of the original feature, PCA
minimizes the reconstruction error with top L eigenvectors of the

covariance matrix XX”, which is formulated in Eq. (3).

min ||[X — VWTX|%,s.t. VIV=1
VGR’XL

3

The solution to Eq. (3) is the L eigenvectors corresponding to the
top L eigenvalues of matrix XX”, which can be easily calculated by the
SVD decomposition. The detailed numerical comparisons on the
datasets are shown in Section 4.

3.2.2. Supervised PDF pattern learning

In this section, we will make use of the labels of the training data to
discover discriminative patterns for pedestrian detection. In order to
distinguish pedestrian from the negative patches, the conventional
method consists in finding an optimal projection vector for each pixel
coordinate, such that the high inter-class variance and low inner-class
variance are obtained simultaneously. Mathematically, it is formulated
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(b)

Fig. 9. Average channel map and average LPDF filtering results for the training data. (First columns of Fig. 9(a—b) with red box represent the 10 average channel map; Eight right
columns of Fig. 9(a—b) represent the 8 average LPDF in each channel). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)
in Eq. (4).
Wy = arg max wiSyw
=
” wl'S,w @

where S, is the between-class scatter matrix and S,, is the within-class
scatter matrix. The solution of Eq. (4) can be written in a closed form
w* = S;1(m; — my), where m; and m; is the mean of the positive and
negative PDF respectively. As shown in Fig. 11, there also exist two
different learning strategies similar to the approach introduced in
Section 3.2.1, i.e., pixel-wise LDA (Pi-LDA) and channel-wise LDA (Ch-
LDA). The difference between them is the resulting feature dimension-
alities, which are W x H and W x H x C for Ch-LDA and Pi-LDA
respectively. In addition, it is observed that this Pi-LDA based feature
significantly profits the performance gains of the detector. In the
experiments, we will conduct comparative study for comparing these
features.

4. Experiment
4.1. Experiment setting

In order to validate the effectiveness of our method, we carry out
extensive experiments on three public datasets for pedestrian detection

WxHxD S WxHxD

X

D

F(x)

W xH xDxC
PCA

W x HxD' W xHxd'

(a) Ch-PCA

F(x)
“/ . \ WxHxd C  WxHxd
d' .

task and on two datasets for multi-view face detection task, which are
briefly described in Table 1 and 2.

The detailed experiment setting for pedestrian detection is de-
scribed as follows. The size of the pedestrian window is set to 128x64,
and each positive sample is cropped from the annotated image. Each
annotation of pedestrian is jittered to mitigate the misalignment
problem. The total number of positive samples is about 24,740 for
the INRIA dataset and 24,498 for the Caltech dataset. The pooling
template size is of 4x4 pixels, which shrinks the original channel maps
(size 128x64x10) into pooled channel maps (size 32x16x10). We
make use of AdaBoost algorithm to perform feature selection, with
depth-2 decision tree as weak classifiers. The AdaBoost training is
conducted by five rounds (32, 128, 512, 2048, 4096), each of which is
trained with 10,000 negatives which are bootstrapped from a large
negative pools. We use public available Piotr's toolbox [17] to calculate
the channel features and utilize the evaluation code [17] to evaluate the
detector.

Following the setting in [17], our multi-view face detector is also
trained on the AFLW database. The size of the face window is 80x80.
We have trained six face detectors according to different yaw angles
which is divided into [-90,-60], [-60,-30], [-30, 0], [0,30], [30,60],
[60,90] respectively. The pitch and roll angle is limited to [-22.5, 22.5].
The number of positive training samples for each detector is 3726,

W xHxD W xHxd

F.(x
i ) i / WxHxdxC

W xH xD W xHxd

(b) Pi-PCA

Fig. 10. Feature dimension reduction with PCA in two different methods.
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Fig. 11. Feature information composition with LDA in two different methods.

Table 1
Datasets for pedestrian detection.

Dataset name Description

INRIA http://pascal.inrialpes.fr/data/human/

Training data: 2416 human annotations in 614 and 1218 non-
human images

Testing data: 1132 human annotations in 288 and 453 non-
human images

Caltech-USA http://www.vision.caltech.edu/Image_ Datasets/
CaltechPedestrians/

Training data:6325 pedestrian annotations in 4250 images
(set00—set05)

Testing data: 5051 pedestrian annotations in 4024 images
(set06—set10)

ETH http://www.vision.ee.ethz.ch/~aess/dataset/
Training data: 3780 pedestrian annotations in 853 images
Testing data: 14,167 pedestrian annotations in 1804 images
Table 2

Datasets for multi-view face detection.

Dataset name Description

AFLW http://Irs.icg.tugraz.at/research/aflw/
Training data: about 25 k annotated faces in real-world
images
FDDB http://vis-www.cs.umass.edu/fddb/
Testing data: 5171 annotated faces in 2845 images
AFW http://www.ics.uci.edu/~xzhu/face/AFW.zip

Testing data: 468 annotated faces in 205 images

4024, 4636, 5069, 4024, and 3726 according to the yaw angles. The
detector is trained with AdaBoost algorithm with four rounds and the
final detector comprises 2048 weak classifiers. A total number of 4881
negative images without any faces for bootstrapping are collected from
VOC 2007 dataset.

4.2. Comparison of PDF with different parameters

In order to derive the optimal parameter of stride(S) and radius(R),
we have conducted a set of experiments on the INRIA dataset. As can
be seen from Fig. 12, we can see that, the optimal parameter for the
LPDF is achieved when the stride equals to 1(S=1) and radius of the
encode area is 3(R=3). It is observed that this parameter configuration
is also best for the other two features. Besides, the SPDF is superior to

133

other two features, with the lowest miss rate of 14.46%. So we can infer
that symmetric information helps to improve the performance of
pedestrian detection.

4.3. Analysis of learned filters with PCA and LDA

In order to get insight from the learned weights, we visualize the top
features which are selected by our classifiers. We have test four
different learning modes (Ch-PCA, Pi-PCA, Ch-LDA and Pi-LDA),
which is shown in Fig. 13(a—d) respectively. The channel-wised feature
learning means the filter is learned across channels that only depend on
the position of the pixels, whereas the pixel-wised filter learning means
it is learned on each channel of the training samples independently.

As shown in Fig. 13(a), we can see that the first learned eigenvector
of Ch-PCA(first column in Fig. 13(a)) has large absolute weight values
on the 1st, 3rd, 5th and 7th dimension of PDF corresponding to the
four diagonal directions (shown in Fig. 5). The second and third
eigenvector of the filter corresponds to the 8th and 6th dimension of
PDF (largest weight), which represent the horizontal and vertical
directions. The position of the corresponding PDF is shown in
Fig. 13(e), from which we observe that PCA can distill orthogonal
directions for local differentiation patterns (corresponding PDF is
located in the left shoulder in Fig. 13(e)).

We have also demonstrated the top filter learned by Pi-PCA. The
position of the learned filter is shown in Fig. 13(f) and the weight of the
filter is shown in Fig. 13(b). We can see that it is quite different from
the filters in Fig. 13(a) which learn all the channels as a whole. In the
top eigenvector (first column of Fig. 13(b)), we observed that the
largest absolute weight values focus on the direction 5th, 6th, 7th and
8th dimension of the PDF (corresponding PDF located in the bottom of
the left leg in Fig. 13(f)).

As shown in Fig. 13(c), the Ch-LDA filter put more weights on the
3th and 5th dimension of PDF in the 8th channel map. This is also
consistent with the feature selected in Fig. 13(g), which suggests the
largest contract values are presented in the orientation of 45 and 135°.

Fig. 13(d) gives the Pi-LDA filter in the 5th channel, while
Fig. 13(h) provides the PDF in the 5th channel maps which located
in the region of legs. It is easy to observe that this region seems to be
much brighter than other surrounding regions. As can be seen in
Fig. 13(d), the largest two weights are in the 5th and 6th dimension of
the PDF.

In Fig. 14, we observe that Pi-LDA and Pi-PCA enable promoting
the performance of the original TPDF features. However, the Ch-LDA
and Ch-PCA degrade the performance of the detector. It is also shown
that TPDF exhibits superior performance over LDF, CPDF and SPDF,
all of which works better than ACF feature on which our feature is built.
Therefore, we only consider pixel-wise scenario for feature learning in
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(a) LPDF

(b) CPDF

(c) SPDF

Fig. 12. Optimal parameter selection for LPDF, CPDF and SPDF.

the following section. Besides, we also find that Pi-LDA performs
slightly better than Pi-PCA method.

4.4. Comparisons with state-of-the-art algorithms for pedestrian
detection

4.4.1. Evaluation on the INRIA dataset

In this paper, we compare our proposed method with the state-of-
the-art methods. We use public available Piotr's toolbox [3] for
evaluation. The state-of-the-art methods include the ACF [10], LDCF
[11] and IHF [12] which are closely related to our proposed method.
Other methods in our comparative study include ConvNet [5], Sketch
Tokens [18], and two baseline methods (VJ [19] and HOG [7]). The
comparison results are shown in Fig. 15. It can be seen that, our
method achieves state-of-the-art result at a miss rate approximately
4.7% lower than ACF and 0.8% lower than LDCF, which substantially
suggests that local neighbor pixel differential information is very
discriminative in channel maps.

4.4.2. Experiments on the Caltech dataset

We also evaluate our method with extensive comparative study on
the Caltech dataset. Fig. 16 offers the performance of different
methods. Similar to the results achieved on the INRIA dataset, our
method outperforms all the hand-crafted features and reveals the
consistent superiority on the Caltech dataset. In particular, our method
significantly outperforms ACF by reporting a 5% lower average miss
rate. Besides, the marginal superiority is also observed against LDCF.
In addition to the detection accuracy, our method is also advantageous
in real-time running and fast training speed.

4.4.3. Experiments on ETH dataset

Due to involving dramatic variance in human scale ranging from
13x25 to 239x478, two octaves of the test image in this dataset is
upscaled to detect the smaller pedestrian. Fig. 17 provides the
experimental results of different methods on ETH dataset. It demon-
strates our method considerably outperforms ACF and LDCF (10%
lower than ACF and 4.7% lower than LDCF). Interestingly, our method
even achieves comparable performance with the best result thus far
which is obtained by deep models. This can be explained by the higher
images resolution and smaller pedestrian pose variation on ETH
dataset. Consequently, the local neighbor differential feature on the
channel maps is capable of describing the shape of the pedestrians
more preferably.

4.5. Comparisons with state-of-the-art algorithms for face detection

4.5.1. Experiments on FDDB dataset
In this section, we also evaluate our method on the FDDB dataset
for face detection task (Fig. 18). We follow the evaluation protocol in
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[20] and use the average discrete ROC and continuous ROC as the
performance measure. In the comparative study, we compare our
method with seven state-of-the-art approaches. On par with the best
hand-crafted feature [17], our method performs comparable to the
ACF-multiscale for multi-view face detection.

The Yan's [21] and the HeadHunter [22] methods make use of DPM
to model the variation of face units such as eyes and nose that can get
better detection results. The other three [23-25] methods learn the
discriminative features based on the Deep Learning methods. However,
our method is much efficient to train and also achieves competitive
results.

4.5.2. Experiments on the AFW dataset

The experimental results on the AFW dataset are shown in
Fig. 19(a). Our method achieves average precision of 92.45 which is
5% lower than the best HeadHunter method (Fig. 19(b), Fig. 11 from
[22]). In this experiment, we cannot reproduce the result of ACF-
multiscale [15], which is still 4.4% lower than the published result due
probably to slightly different number of training data reported in the
paper. But in our experimental setting, our TPDF method is superior to
our implement of the ACF method.

4.6. Runtime comparison

All the experiments are implemented with Matlab R2014b and
visual studio 2012 on DELL Precision T7610 workstation (16 core dual
CPU E5-2650, 2.6GHZ, 64G). It takes about 6 h to train a four-stage
pedestrian detector with approximately 20 fps detection speed for a
640x480 image. The comparison results are shown in Table 3. Average
reject number [26] is also utilized to evaluate the speed of detectors
with different features, which is shown in Table 3. Note that our
detector can be further accelerated with GPU or other parallel
computing techniques.

5. Conclusion

We propose a novel pixel neighborhood differential statistic feature
which makes use of the differential statistic information of local pixel
and its neighborhood to detect pedestrians effectively and efficiently.
Our proposed method takes into account the local differential informa-
tion instead of the only partial order for the LBP, which significantly
contributes to the performance gains. Experimental results for pedes-
trian detection based on the INRIA, Caltech and ETH datasets, and face
detection based on the FDDB and AFW datasets show that our method
can achieve state-of-the-art results. Besides that, our method consis-
tently outperforms other competing hand-crafted features for pedes-
trian detection. Meanwhile, our method can be readily and efficiently
implemented with a real-time running speed for 640x480 images.
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(a) (b)

(e) 0] (2 (h)

Fig. 13. Analysis of learned filters with PCA and LDA. ((a) Ch-PCA on the 5th channel, (b) Pi-PCA on the 5th channel, (c) Ch-LDA, (d) Pi-LDA; (e) position of top PDF with Ch-PCA, (f)
Position of top PDF with Pi-PCA, (g) Position of top PDF with Ch-LDA, (h) Position of top PDF with Pi-LDA), ((a—b) Horizontal axis represents top n eigenvectors, vertical axis
represents dimension of PDF; (c—d) Horizontal axis represents channel index, vertical axis represents dimension of PDF).
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Fig. 15. Results on INRIA dataset.
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Fig. 16. Results on Caltech dataset.
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Runtime comparison.
Name Running speed (fps) Average reject number
ACF 30 5.24
TPDF 20 3.47
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