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a  b  s  t  r  a  c  t

The  purpose  of  this  paper is  to develop  a multi-item  economic  order  quantity  (EOQ)  model  with  shortage
for  a single-buyer  single-supplier  supply  chain  under  green  vendor  managed  inventory  (VMI)  policy.
This  model  explicitly  includes  the  VMI  contractual  agreement  between  the vendor  and  the  buyer  such as
warehouse  capacity  and  delivery  constraints,  bounds  for each  order,  and  limits  on the  number  of  pallets.
To create  a kind  of  green  supply  chain,  tax cost  of  green  house  gas  (GHG)  emissions  and  limitation  on
total  emissions  of all items  are considered  in  the  model.  A hybrid  genetic  and  imperialist  competitive
algorithm  (HGA)  is  employed  to find  a near-optimum  solution  of  a nonlinear  integer-programming  (NIP)
with the  objective  of  minimizing  the  total  cost  of  the  supply  chain.  Since  no benchmark  is  available  in
mperialist competitive algorithm (ICA)
endor managed inventory (VMI)
ybrid algorithm
reen house gas (GHG) emissions

the  literature,  a genetic  algorithm  (GA) is developed  as well  to validate  the result  obtained.  For  further
validation,  the  outcomes  are  also  compared  to lower  bounds  that are  found  using  a  relaxed  model  in
which  all  variables  are  treated  continuous.  At the  end,  numerical  examples  are  presented  to  demonstrate
the  application  of  the  proposed  methodology.  Our  results  proved  that  the  proposed  hybrid  procedure
was  able to  find  better  and  nearer  optimal  solutions.

© 2015  Published  by  Elsevier  B.V.
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. Introduction

One of the most important problems in companies that utilize
endors to provide raw materials, components, and finished prod-
cts is to determine the order quantity and the points to place
rders. Various models in production and inventory control field
ave been proposed and devoted to solve this problem in different
cenarios. Two of the models that have been employed extensively
re the economic order quantity (EOQ) and economic production
uantity (EPQ) models (see for example [1,2]). However, these
odels are developed based on some assumptions and conditions

hat bound their applicability in real-world situations. The EOQ
ormula gives an optimal solution when the vendor and buyer
Please cite this article in press as: A. Roozbeh Nia, et al., A
green vendor managed inventory of multi-item multi-constraint
http://dx.doi.org/10.1016/j.asoc.2015.02.004

nventory problems are treated in isolation under the deterministic
onditions [3].
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55
In real business world, sometimes a manufacturer, supplier and
markets/retailer would like to make a long-term cooperative rela-
tionship as an integrated system to get a tensionless stable source
of supply and demand of items as well as reliability to gain opti-
mum profit from each other. Globally, the industrial environment
gradually becomes more and more competitive and much effort
has been made toward the efficiency and effectiveness. So in this
connection, the supply chain (SC) management plays an important
role in the present situation [4]. Several programs of collabora-
tion and coordination between SC partners have been successfully
implemented in practice. Vendor managed inventory (VMI) is col-
laborative initiatives that have been theoretically and empirically
shown to improve SC efficiency and responsiveness [5]. Under
VMI  partnership, the vendor (supplier) is responsible for managing
inventory levels at the retail store by determining the right timing
and size of the orders. In return, the vendor gets a better visibil-
ity about the final customer demand. Historically, VMI  originated
 hybrid genetic and imperialist competitive algorithm for
 EOQ model under shortage, Appl. Soft Comput. J. (2015),

in the retail industry to overcome some of the problems regarding
the amount of required retail shelf space, the amount of inventory
to be kept on hand, inventory obsolescence, and the logistics of
returned products [6,7]. The benefits of VMI  are well recognized
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y successful retail businesses such as Wal-Mart, JC Penney, and
illard Department Stores [8]. Successful VMI  implementations in

etailing are more observed in the apparel industry. For example,
F Corporation was able to increase the sales of its men’s jeans
y 20% through the adoption of a replenishment system based on
oint-of-sales data and VMI  principles [9].

With the developing global consciousness of environmental
rotection and the corresponding growth in legislation and reg-
lations, green purchasing has become an essential issue for
nterprises to improvement environmental sustainability. Now,
umerous businesses have begun to perform green SC management
nd take into account environmental subjects and the measure-
ent of their vendors’ environmental performance. In recent

iterature [10–12], incorporating environmental performance into
nventory and logistics systems has been strongly accentuated, and
as been achievement momentum in the past few years. Numer-
us models that investigated the classical economic order quantity
EOQ) for some environmental problems have been suggested. A
ommon outcome among these models is that the performance
f an inventory policy becomes sensitive when greenhouse gases
GHG) emissions (e.g. CO2) are accounted for.

While a substantial amount of research works are available in
he literature, a brief review of the works on the vendor-managed
nventory of supply chains is presented in the next section.

. Literature review

A number of authors extended some of the classical inventory
odels by assuming that the demand is a function of the inven-

ory level. Baker and Urban [13] were the first to extend the EOQ
odel by considering a demand rate that is a function of the instan-

aneous inventory level of an item. They developed an extended
OQ model for a power-form inventory level dependent demand.
aker and Urban’s [13] model was further extended to cover other

nventory situations such as deteriorating items, different classes
f customers, presence of defective items, effects of inflation and
ime value of money, and stochastic demand.

Several research works in the SC literature have been devoted
o the study of the economic benefits resulting from the imple-

entation of VMI  partnerships. Magee [14] discussed who should
ave authority over the control of inventories. However, interest

n the concept has only really developed during the 1990s. Waller
t al. [15] indicated that the VMI  method could improve inventory
urnover and customer service levels at every stage of a supply
hain. Moreover, Dong and Xu [8] evaluated the impacts of VMI
n the profits of the different supply channel’s members within
he EOQ framework. Cetinkaya and Lee [16] presented an analyti-
al model for coordinating inventory and transportation decisions
n VMI  systems. Woo  et al. [17] and Yu and Liang [18] extended
heir two-echelon inventory supply chains to three-echelon ones
here the supplier was a manufacturer and his raw materials’

nventory was involved. Furthermore, the studies by Lee et al. [19]
nd Vergin and Barr [20] conclude that VMI  is becoming an effec-
ive approach for implementing the channel coordination initiative,
hich is critical and imperative to improve the entire chain’s finan-

ial performance.
Bertazzi et al. [21] compared the order-up-to level policy and the

ll-fill-dump policy of VMI. They showed that the fill-fill-dump pol-
cy leads to a lower average cost than the order-up-to level policy.
ao et al. [22] proposed an EOQ based analytical model to study the
ffect of the supply chain parameters on VMI  benefits. They showed
Please cite this article in press as: A. Roozbeh Nia, et al., A
green vendor managed inventory of multi-item multi-constraint
http://dx.doi.org/10.1016/j.asoc.2015.02.004

hat inventory cost reduction depends on the vendor–buyer order-
ng and holding costs ratios. Moreover, Haisheng et al. [23] analyzed
MI  partnership using evolutionary game theories and showed that
MI  partnership is not beneficial to the supplier at early stage of
 PRESS
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the VMI  implementation. However, the entire chain will benefit by
increasing the transaction quantity in the long run. It is also nec-
essary for the buyer to share profit with the supplier to cover the
later initial loss and to exploit and sustain the benefit of VMI.

Bookbinder et al. [24] analyzed the tradeoff between indepen-
dent and coordinated decision making for a manufacturing–retailer
system adopting VMI  agreement. They investigated the inventory
control policies under independent, VMI  agreement, and cen-
tralized decision-making scenarios to assess the benefits of VMI
arrangements. Pasandideh et al. [25] developed an analytical model
to explore the effect of important supply chain parameters on the
cost savings realized from collaborative initiatives by an investiga-
tion of vendor managed inventory application based on EOQ with
shortage and examines the inventory management practices before
and after implementation of VMI. Razmi et al. [26] compared the
performance of a VMI  supply chain system with the one of a tradi-
tional “serially linked” one in terms of the total inventory cost. The
supply chain was  considered in two  levels, i.e., buyer and supplier,
with the assumption that the supplier faces only one buyer as the
contract party. Pasandideh et al. [27] presented a genetic algorithm
(GA) for vendor management inventory system with multiprod-
uct, multi-constraint based on EOQ with backorders considering
two classical backorders costs: linear and fixed. Lately, Roozbeh
Nia et al. [28] proposed a fuzzy multi-item multi-constraint EOQ
model with shortage for a single-vendor single-buyer supply chain
under vendor managed inventory. They employed three meta-
heuristic algorithms (genetic algorithm, ant colony optimization
and differential evolution), to find a near-optimum solution of the
fuzzy nonlinear integer-programming problem with the objective
of minimizing the total cost of the supply chain.

For environmental topics containing GHG emissions, when
making inventory decisions, has been stressed in Bonney and
Jaber [11], who  outlined their paper as a research agenda. For
demonstrative purposes, they proposed an improved type of the
EOQ model (i.e. Enviro-EOQ), which accounts for transportation
cost and taxes due to GHG emissions produced. Under such sit-
uations, it was recommended that it is not economical to work
under the EOQ strategy. The model of Bonney and Jaber [11]
generated some works beside the same line with changing assump-
tions (e.g. [29–31]). Jaber et al. [32] study the effects of GHG
emissions on the joint lot size strategy of a two-level supply
chain similar to that of Hill [33,34]. The model proposed by
Zanoni et al. [12] has been motivated by the work of Jaber
et al. [32] who  accounted for GHG emissions produced from the
vendor’s production process by taking into consideration both
emissions costs and penalties paid for exceeding the annual emis-
sions’ quota under vendor managed inventory with only a single
product.

This research has been inspired by the works of Pasandideh et al.
[27] and Roozbeh Nia et al. [28], a multi-item multi-constraint EOQ
model with shortage is developed for a green SC with single sup-
plier and single buyer under the VMI  policy. However, to bring their
model to be applicable to closer to reality problems, additional con-
tractual agreement between the vendor and the buyer including
constraints on the number of pallets required to deliver the items,
the number of deliveries, and the quantity of an order are consid-
ered. To create a kind of green SC, tax cost of green house gas (GHG)
emissions and limitation on total Emissions of all items are con-
sidered in the model. In addition, a hybrid genetic and imperialist
competitive algorithm (HGA) is employed to find a near-optimum
solution of the developed nonlinear integer-programming (NIP)
with the objective of minimizing the total cost of the green SC. Since
 hybrid genetic and imperialist competitive algorithm for
 EOQ model under shortage, Appl. Soft Comput. J. (2015),

no benchmark is available in the literature, a genetic algorithm (GA)
is developed as well to validate the result obtained. For further vali-
dation, the results are also compared to lower bounds that are found
using a relaxed model in which all variables are treated continuous.
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n short, the highlights of the differences of this research with the
bove-mentioned studies are as follow:

Considering green house gas (GHG) emissions tax cost and limita-
tion on total emissions of all items to make a kind of green supply
chain
Adding a VMI  contractual agreement between the vendor and the
buyer to make the model more applicable
Proposing a new modeling to the VMI  supply chain problem
Proposing a hybrid GA and imperialist competitive algorithm (ICA)
to solve better the new model
Comparing the results with the ones obtained using a GA and lower
bounds for validation

The structure of the rest of the paper is organized as follows. In
ection 3, the problem is defined and the assumptions are made.
n Section 4, the problem is mathematically formulated into a non-
inear integer-programming model. A hybrid ICA and GA (HGA) are
roposed to solve the problem in Section 5. In order to demonstrate
he application of the proposed approach, numerical examples are
olved in Section 6. Finally, conclusions and future research topics
re provided in Section 7.

. The problem and the assumptions

In a single-vendor (as a supplier) single-buyer SC that utilizes
he VMI  policy, the vendor’s information system directly receives
onsumer demand data. As a result, the vendor has now the com-
ined inventory with order setup and holding cost [8]. Unlike the
raditional system, the vendor and the buyer in a VMI  system act as a
ingle unit. They work based on an agreement which is admitted by
oth parties. This agreement is the main idea of VMI  and states that
he vendor establishes and manages the inventory control policies.
ere, it is assumed that the vendor pays the ordering and holding
osts on behalf of the buyer as a part of the mentioned agreement;
he buyer paying no cost. This assumption has also been taken into
onsiderations in prior studies such as [22,26,27,35] where supply
hain integration in VMI  has been discussed.

This research is concerned with a green SC with multi-items
sing the EOQ model in which not only the storage capacity and the
olume of all deliveries are restricted, but also the order quantities
re limited and depend on the pallet capacity. Moreover, there are
ounds on the number of orders and the number of pallets. Tax cost
f green house gas (GHG) emissions and limitation on total emis-
ions of all items are considered in the model to make a type of green
C. In order the model to be more applicable to real-world green
C problems, shortages are allowed in the form of backorders. The
bjective is to find the items’ order quantities, their required num-
er of pallets, and their maximum backorder levels per cycle such
hat the total VMI  inventory cost is minimized while the constraints
re satisfied.

.1. Assumptions

The following assumptions are used for the mathematical for-
ulation:

(a) There is a single supplier, single buyer SC with n items.
b) Shortage is allowed in the form of backorder for all of items.

(c) The time-independent fixed backorder cost per unit is assumed
zero for all items.
Please cite this article in press as: A. Roozbeh Nia, et al., A
green vendor managed inventory of multi-item multi-constraint
http://dx.doi.org/10.1016/j.asoc.2015.02.004

d) The linear backorder cost per unit per time unit is known and
applied to all items.

(e) Orders are delivered by pallets and are assumed instantaneous
(lead time is assumed zero).
 PRESS
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(f) Quantity discount is not allowed.
(g) The price for all items is fixed in the planning period.
(h) The production rate for all items is infinite (EOQ model).
(i) Costumer’s demand for all items is deterministic.
(j) The storage capacity is limited.
(k) The buyer’s total order quantity of all items is limited.
(l) The buyer’s order quantity of an item has an upper bound.
m)  The order quantity of each item is constrained (depends on the

pallet’s capacity).
(n) The number of pallets for an item is limited.

4. Mathematical model

Before giving the mathematical formulation of the problem at
hand, the notations are first introduced.

4.1. Notations

For j = 1, 2, . . .,  n, let define the parameters and the variables of
the model as:

n: number of items
Qj: order quantity of item j (a decision variable)
Lj: lower limit on the order quantity of item j
Uj: upper limit on the order quantity of item j
UQ: upper bound on total order quantity of all items
Dj: buyer’s demand rate of item j
Ej: vendor’s GHG emissions level of item j
Ct: vendor’s fixed emissions tax cost
˛: emissions function’s factor (ton/unit)
Ue: upper bound on total GHG Emissions of all items
AjS: vendor’s fixed ordering cost per unit of item j
AjB: buyer’s fixed ordering cost per unit of item j
hjB: holding cost per unit of item j held in buyer’s store in a period
bj: maximum backorder level of item j in a cycle of the VMI  chain
(a decision variable)
�1: fixed backorder cost per unit (time independent)
�2: linear backorder cost per unit per time unit
fj space occupied by each unit of item j
F: available storage space for all items
Kj: capacity of the pallet for item j
Nj: number of pallets for an order of item j (a decision variable)
Mj: upper limit on the number of pallets for each order of item j
TOj: total cost of ordering
THj: total cost of holding
Tbj: total cost of shortage
TEj: total cost of emissions
TBVMI: total cost of buyer’s inventory in the VMI  chain
TSVMI: total cost of vendor’s inventory in the VMI chain
TCVMI: total costs of the VMI  chain

Based on the above definitions, the mathematical model of the
problem is derived in the next subsections.

4.2. The buyer’s total cost

In the SC under the VMI  policy, the vendor based on his own
inventory cost (which equals to the total cost of the SC) deter-
mines the timing and the quantity of production in every cycle. The
major difference between not using and using VMI  is that the ven-
dor determines the buyer’s order quantity in a VMI  policy, where it
is assumed that the vendor on behalf of the buyer pays the order-
 hybrid genetic and imperialist competitive algorithm for
 EOQ model under shortage, Appl. Soft Comput. J. (2015),

ing and the holding cost [26]. Thus, the buyer pays no cost and we
have:

TBVMI = 0 (1)

301

302

303

dx.doi.org/10.1016/j.asoc.2015.02.004


 ING Model
A

4  Soft C

4

t
c

T

w

T

T

T

T

w

T

4

p

T

4

b
t
a
w

∑

i

L

t

∑

w

Q

w

N

o

b

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378
ARTICLESOC 2783 1–12

 A. Roozbeh Nia et al. / Applied

.3. The vendor’s total cost

In EOQ model with shortage under the VMI  policy, the vendor
otal cost per unit time of the jth item is determined by adding the
ost of ordering, holding, shortage and emission as:

SVMI = TOj + THj + Tbj + TEj (2)

here

Oj = Dj

Qj
AjS + Dj

Qj
AjB (3)

Hj = hjB

2Qj
(Qj − bj)

2 (4)

bj =
�2b2

j

2Qj
+ �1bjDj

Qj
(5)

Ej = EjDjCt (6)

here Ej = Qj · ˛. As a result, the vendor’s total cost becomes

SVMI =
n∑

j=1

(
AjSDj

Qj
+ AjBDj

Qj
+ hjB

2Qj
(Qj − bj)

2 +
�2b2

j

2Qj
+ �1bjDj

Qj
+ EjDjCt

)
(7)

.4. The chain total cost

Based on Eqs. (1) and (7), the total cost of the SC under the VMI
olicy is determined by

CVMI = TBVMI + TSVMI

=
n∑

j=1

(
Dj

Qj
(AjS + AjB) + hj

2Qj
(Qj − bj)

2 +
�2b2

j

2Qj
+ �1bjDj

Qj
+ EjDjCt

)
(8)

.5. The constraints

As mentioned previously, there is a contractual agreement
etween the vendor and the buyer that makes the constraints of
he model. The vendor storage capacity is limited and since the
verage inventory of the jth item is (Qj − bj), the space constraint
ill be [36]:

n

j=1

fj(Qj − bj) ≤ F (9)

Moreover, the bounds on the buyer’s order quantity of the jth
tem are

j ≤ Qj ≤ Uj (10)

In addition, the buyer’s total order quantity of all items is limited
o V, that is
n

j=1

Qj ≤ UQ (11)

Since an order of the jth item is required to be placed in a pallet
ith capacity Kj, we have

j = KjNj (12)

here Nj is the number of pallets that is limited to [28]

j ≤ Mj (13)
Please cite this article in press as: A. Roozbeh Nia, et al., A
green vendor managed inventory of multi-item multi-constraint
http://dx.doi.org/10.1016/j.asoc.2015.02.004

The maximum backorder level of item j in a cycle must be equal
r less than its order quantity. That is

j ≤ Qj (14)
 PRESS
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Finally, the vendor’s total emission level of all items is limited
to Ue, that is

n∑
j=1

Ej ≤ Ue (15)

4.6. The final model

Based on Eqs. (8)–(15), the multi-item multi-constraint EOQ
model under green VMI  policy can be easily obtained as:

Min  TCVMI =
n∑

j=1

(
Dj

Qj
(AjS + AjB) + hj

2Qj
(Qj − bj)

2 +
�2b2

j

2Qj
+ �1bjDj

Qj
+ EjDjCt

)

s.t.

n∑
j=1

fj(Qj − bj) ≤ F

Lj ≤ Qj ≤ Uj

n∑
j=1

Qj ≤ UQ

Qj = KjNj

Nj ≤ Mj

n∑
j=1

Ej ≤ Ue

bj ≤ Qj

Qj, Nj > 0, integer j = 1, 2, 3, . . ., n

bj ≥ 0, integer j = 1, 2, 3, . . .,  n

(16)

The goal is to determine the order quantities (Qj), the maximum
backorder level (bj), and the number of pallets for each order (Nj) in
a cycle so that the total cost of the supply chain under the green VMI
policy given in (16) is minimized and all the constraints are fulfilled.
In the next section, a hybrid meta-heuristic solution algorithm is
proposed to efficiently solve the problem.

5. The hybrid solution algorithm

Since the model in (16) is integer nonlinear in nature, reach-
ing an analytical solution (if any) to the problem is difficult [37].
Furthermore, efficient treatment of integer nonlinear optimization
is one of the most difficult problems in practical optimization. In
such complicated combinatorial optimizations, exact algorithms
and optimization solvers such as CPLEX and LINGO are inefficient,
especially on practical-size problems [38]. Hence, a meta-heuristic
search algorithm is needed for solution. Many researchers have
successfully used meta-heuristic methods to solve complicated
optimization problems in different fields of scientific and engi-
neering disciplines. Some of these meta-heuristic algorithms are:
simulating annealing [39,40], threshold accepting [41], Tabu search
[42], genetic algorithm [35,43,44], particle swarm optimization
[45–50], neural networks [51], ant colony optimization [28,52],
evolutionary algorithm [53,54], harmony search [55,56] and grav-
itational search algorithm [57]. Among these algorithms, the
population-based ones are usually preferred to others and in some
cases show better performances.

Latest studies [38,58–60] have revealed that hybrid meta-
heuristics work better than individual meta-heuristics for solving
nonlinear models. Generally, hybridization refers to the combi-
nation of two search algorithms to solve a given problem [59].
 hybrid genetic and imperialist competitive algorithm for
 EOQ model under shortage, Appl. Soft Comput. J. (2015),

The hybridization does provide some advantages over the indi-
vidual meta-heuristics to reach better objective functions in less
computational times. There are some methods to employ hybrid
meta-heuristics, one of which is combining the traditional GA with
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Fig. 2. Movement of colonies toward their relevant imperialist.
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ny of the meta-heuristic algorithms. As a result, this research pro-
oses a hybrid algorithm based on a GA and a new global heuristic
earch of imperialist competitive algorithm (ICA) that applies impe-
ialistic competition process as a source of inspiration, named HGA
rt of ICA.

thereafter, in order to solve the nonlinear integer-programming
(NIP) problem in (16). In the proposed method, to make a hybrid
algorithm (HGA), ICA is used to produce the best initial solutions.
Accordingly, the initial inputs for the hybrid GA come from the best
outputs (Qj, bj and Nj) of the ICA. Then, The HGA runs until a ter-
mination condition (i.e. on the maximum number of iterations) is
met.

In the next tow subsections, brief descriptions are first given for
ICA and GA. Then, in the subsequent subsection, the steps involved
in HGA are described.

5.1. The imperialist competitive algorithm (ICA)
 hybrid genetic and imperialist competitive algorithm for
 EOQ model under shortage, Appl. Soft Comput. J. (2015),

ICA, proposed by Atashpaz-Gargari and Lucas [61], is a new
global heuristic search that applies imperialism and imperialistic
competition process as a source of inspiration. The flowchart of
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Fig. 3. The flo

his algorithm is demonstrated in Fig. 1. ICA starts with an ini-
ial population. Several of the best individual of this population,
alled countries, are picked up as the imperialist states and all the
ests make the colonies of these imperialists. Due to imperialists’
owers that are reversely proportional to their cost, the colonies
f initial population are divided among them. Having distributed
olonies between imperialists and establishing the initial empires,
hese colonies commence proceeding toward their relevant impe-
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ialist country. Fig. 2 shows the movement of a colony toward the
mperialist. In this movement, � and x are arbitrary numbers that
re generated uniformly (x ≈ U(0,  ̌ × d), � ≈ U(− � , �)). Here, d is
he distance between a colony and the imperialist and  ̌ must be
rt of GA [62].

greater than one. This constraint causes the colonies to get closer
to the imperialist state from both sides. Moreover, � is a parameter
that adopts the deviation from the main direction. Although  ̌ and
� are random numbers, most of the times their best fitted value are
approximately 2 and �/4 (rad), respectively [61].

The power of the imperialist country in addition to the power of
its colonies, determine the total power of an empire. More explic-
itly, a percentage of the mean power of each imperialist’s colonies is
 hybrid genetic and imperialist competitive algorithm for
 EOQ model under shortage, Appl. Soft Comput. J. (2015),

added to power of imperialist to form the total power of an empire.
Any empire that does not improve in imperialist competition will be
diminished. As a result, the imperialistic competition increases the
power of great empires and weakens the frail ones. Hence, weak
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Table 1
Data for the numerical experimentation.

Item Dj AjS AjB hj Kj fj Lj Uj Mj

1 800 400 50 12 1 1 100 240 270
2  1300 400 50 12 2 1 120 260 150
3  1800 400 50 12 5 1 100 240 50
4  2300 400 50 12 6 1 120 264 44
5  2800 400 50 12 10 1 100 240 30
6  3300 400 50 12 1 0.5 120 240 270
7  3800 400 50 12 2 0.5 100 260 150
8  4300 400 50 12 5 0.5 120 240 50
9  4800 400 50 12 6 0.5 100 264 44

10  5300 400 50 12 10 0.5 120 240 30
11  5800 600 70 6 1 1 100 240 270
12  6300 600 70 6 2 1 120 260 150
13  6800 600 70 6 5 1 100 240 50
14  7300 600 70 6 6 1 120 264 44
15  7800 600 70 6 10 1 100 240 30
16  8300 600 70 6 1 0.5 120 240 270
17  8800 600 70 6 2 0.5 100 260 150
18  9300 600 70 6 5 0.5 120 240 50
19  9800 600 70 6 6 0.5 100 264 44
20  10,300 600 70 6 10 0.5 120 240 30
21  10,800 600 70 6 1 1 100 240 270
22  11,300 600 70 6 2 1 120 260 150
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Fig. 4. Box-chart of the solving methodology.

mpires will collapse finally. The movement of colonies toward
heir related imperialists along with competition among empires
nd also collapse mechanism will bring out the countries to con-
erge to a state in which there exist just one empire in the world
nd all the rests are its colonies. In this final stage, colonies have
he same position and power as the imperialist [61]. Moreover,
ince determining the optimum values of the initial parameter is
he most important task in any meta-heuristic approach, clustering

ethods can be utilized to do it. As ICA usually works better than
ther population-based meta-heuristics in terms of both the objec-
ive function values of nonlinear optimization problems as well as
n terms of computational times required solving the problem, in
his research we employ it.

.2. The genetic algorithm (GA)

The main parameters of a GA are the population size NGA, the
rossover probability Pc, and the mutation probability Pm. In this
esearch, setting of GA parameters is based on pilot study. More-
Please cite this article in press as: A. Roozbeh Nia, et al., A
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ver, the steps involved in the proposed real coded GA algorithm
re:

. Set the parameters Pc, Pm, and NGA.

Fig. 5. The representation of the chromosom
23  11,800 400 50 12 5 1 100 240 50
24  12,300 400 50 12 6 1 120 264 44

2. Initialize the population randomly.
3. Evaluate the objective function (total cost) of all chromosomes.
4. Select individuals for mating pool.
5. Apply the crossover operation for each pair of chromosomes with

probability Pc.
6. Apply the mutation operation for each chromosome with prob-

ability Pm.
7. Replace the current population by the resulting mating pool.
8. Evaluate the objective function.
9. If stopping criterion is met  stop. Otherwise, go to Step 5 [28].

Fig. 3 shows the flowchart of the GA algorithm [62].

5.3. The steps involved in the solution procedure

The main steps in the proposed procedure are as follow:

Step 1: Determine the total cost of all items using Eq. (16) by ICA
and GA separately.
Step 2: Find the better algorithm for each test problem.
Step 3: Make a hybrid algorithm (HGA) to determine the better and
the near optimum solutions of Qj, bj, and Nj for each item again.
Step 4: Determine the lower bound solution of the model (16) using
GA.
Step 5: Compare the results of the HGA with the lower bound in
Step 4.
 hybrid genetic and imperialist competitive algorithm for
 EOQ model under shortage, Appl. Soft Comput. J. (2015),

The box-chart of the solving methodology and a representation
of the chromosome for a test problem with 12-item are shown in
Figs. 4 and 5, respectively.

e for the test problem with 12-item.
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Table 2
Data of test problem resources.

Problem no. Number of items F V Ue

1 4 12,000 1000 0.3
2  8 20,000 2000 0.6
3  12 28,000 3000 0.9
4  16 36,000 4000 1.2
5  20 44,000 5000 1.5
6  24 52,000 6000 1.8

Table 3
The initial parameter values for ICA and GA.

ICA GA

Country = 400 Probability of crossover (Pc) = 0.8
Percent of empire = 0.4 Probability of mutation (PM) = 0.05

Probability of reproduction (PE) = 0.15
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Stopping criterion = 200 iterations Stopping criterion = 200 iterations

. Numerical examples

In order to demonstrate the application of the proposed hybrid
rocedure and to study its performances, numerical examples are
iven in this section. The initial data of the examples is given in
ables 1 and 2 and the initial parameter values for implementation
f ICA and GA are shown in Table 3. It is obvious from the literature
hat the parameters used in ICA and GA has a strong effect on both
esult time and result quality [63,64]. The ICA and GA parameters
sed were based on a pilot study. In these examples, it is assumed
hat is (�1 = 0, �2 = 3) and the same for all items. Also, for green VMI,
e consider vendor’s fixed emissions tax cost (Ct) is 20 ($/ton) and

missions function’s factor (˛) is 3 × 10−4 (ton/unit). In addition, six
est problems with different number of items (small: 4- and 8-item;

edium: 12- and 16-item; and large: 20- and 24-item size) are
sed. All the test problems are solved on a personal computer with

ntel corei3-2100 processor having 3.10 GHz CPU and 4 Gig RAM.
urthermore, all algorithms are coded using the MATLAB 7.6.0.324
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oftware.
The steps involved in the proposed hybrid procedure to solve

he test problems follow.

able 4
he total VMI  cost obtained by the algorithms (Steps 1 and 3).

Item (j) Total cost 

ICA GA HGA

4 21898.20 21708.13 21705.06 

8  74559.08 72563.80 72303.75 

12  159523.26 155623.87 155220.99 

16  290706.65 284418.31 283450.04 

20  458151.83 448413.99 445509.14 

24  641766.19 623319.78 618587.63 

mprovement (%): Min. = 0.01, Max. = 0.76, Ave. = 0.40.

able 5
he required CPU time of the algorithms (Steps 1 and 3).

Item (j) CPU time (s) The b

ICA GA HGA

4 9.59 10.74 13.37 ICA 

8  9.75 11.49 20.02 ICA 

12  9.87 11.72 24.81 ICA 

16  10.34 12.11 27.57 ICA 

20  10.94 12.53 31.06 ICA 

24  12.61 13.49 34.75 ICA 

mprovement (%): Min. = 6.52, Max. = 15.78, Ave. = 12.58.

511
Fig. 6. The total cost comparison of meta-heuristic algorithms (Steps 2 and 3).

Step 1: In a given test problem, determine the total cost of all items
using Eq. (16) by ICA and GA.

In this step, each algorithm is executed 15 times for each test
problem, where their minimum total costs, the least CPU times (s)
and total produced emission are recorded in Tables 4–6, respec-
tively.
Step 2: Find the better algorithm for each item.

The better algorithm is found by determining the percentage dif-
ference between their results. Based on the results given in Table 4,
GA is absolutely the better than ICA for the total cost of the green SC
VMI. However, based on the results in Tables 5 and 6, ICA is the bet-
ter algorithm in terms of the least CPU time(s) and total produced
emissions in the model. Figs. 6–8 show this superiority better. In
addition, in term of green SC VMI  total cost, GA improvement per-
centages over ICA are 0.87, 2.68, 2.44, 2.16, 2.13 and 2.87 (average:
2.19) for 4-, 8-, 12-, 16-, 20- and 24-item problems, respectively.
Moreover, in term of the CPU time, the ICA improvement per-
centages with respect to GA are 10.71, 15.14, 15.78, 14.62, 12.69
and 6.52 s (average: 12.58) for 4-, 8-, 12-, 16-, 20- and 24-item
problems, respectively. Furthermore, in term of total produced
emission, ICA improvement percentages over GA are 3.45, 6.38,
11.63, 11.30, 9.72 and 12.07 (average: 9.09) for 4-, 8-, 12-, 16-, 20-
 hybrid genetic and imperialist competitive algorithm for
 EOQ model under shortage, Appl. Soft Comput. J. (2015),

and 24-item problems, respectively. All improvement trends are
shown in Fig. 9.

The better algorithm Difference with GA Improvement (%)

HGA 3.07 0.01
HGA 260.05 0.36
HGA 402.88 0.26
HGA 968.27 0.34
HGA 2904.85 0.65
HGA 4732.15 0.76

etter algorithm Difference with GA Improvement (%)

1.15 10.71
1.74 15.14
1.85 15.78
1.77 14.62
1.59 12.69
0.88 6.52

512
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Table  6
The total produced emissions of the algorithms (Steps 1 and 3).

Item (j) Total emissions (ton/period) The better algorithm Difference with GA Improvement (%)

ICA GA HGA

4 0.28 0.29 0.29 ICA 0.01 3.45
8  0.44 0.47 0.48 ICA 0.03 6.38

12  0.76 0.86 0.88 ICA 0.10 11.63
16  1.02 1.15 1.17 ICA 0.13 11.30
20  1.30 1.44 1.47 ICA 0.14 9.72
24  1.53 1.74 1.78 ICA 0.21 12.07

Improvement (%): Min. = 3.45, Max. = 12.07, Ave. = 9.09.

Fig. 7. The CPU time comparison of meta-heuristic algorithms (Steps 2 and 3).

Fig. 8. The total produced emission comparison of meta-heuristic algorithms (Steps
2  and 3).
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ig. 9. GA and ICA improvement trends for total cost, CPU time, and total emission
Step 2).

As a result, GA in terms of total cost shows a sharply upward
Please cite this article in press as: A. Roozbeh Nia, et al., A
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trend to hit the second highest point 2.68% in 8-item test prob-
lem and then a slightly drop for medium size test problem and
finally a significantly rise to reach a peak 2.87% in 24-item. Simi-
larly, CPU time improvement trend by ICA has a surge to reach a
Fig. 10. The graph of the minimum total cost using GA for the 24-item problem
(Step 2).

peak 15.78% in 12-item and then a gradually decline trend in large
size test problems. Correspondingly, total emission improvement
trend by ICA has a dramatically increase in small size test problem
to reach the second highest point 11.63% in 12-item and then a
gentle fall in medium size test problems and lastly a rise in 24-
item. Furthermore, the graph of the minimum total cost using GA
for 24-item problem is displayed in Fig. 10.
Step 3: Make a hybrid algorithm (HGA) to determine the better
near optimum solutions of Qj, bj, and Nj for each item again.

Regarding the results in Step 1, in this step, a hybrid GA (HGA) is
proposed to find a better near optimum solution. We  take the best
outcomes of Qj, bj, and Nj obtained by ICA for each test problem as
an initial solution and input them to GA to make a HGA. Running
HGA 15 times for each test problems and minimum total costs,
the least CPU times (s) and total produced emissions are noted
in Tables 4–6. In addition, the detailed results of HGA for all test
problems include the near optimum value for Qj, bj, and Nj are
shown in Table 7. With regard the results given in Table 4, HGA
performance is completely the better than both ICA and GA for
the total cost of the green SC VMI. However, based on the results
in Tables 5 and 6, HGA outcomes in both terms of the least CPU
time (s) and total produced emissions in the model are not good
enough because ICA is the better algorithm. Figs. 6–8 show these
conditions well.

In addition, in term of green SC VMI total cost, HGA improve-
ment percentages over GA are 0.01, 0.36, 0.26, 0.34, 0.65 and
0.76 (average: 0.4) for 4-, 8-, 12-, 16-, 20- and 24-item problems,
 hybrid genetic and imperialist competitive algorithm for
 EOQ model under shortage, Appl. Soft Comput. J. (2015),

respectively. This improvement trends is shown in Fig. 11. As a
result, HGA in terms of total cost shows at first a sharply upward
trend (in small size test) until 0.36% in 4-item test problem and
then a slightly drop for medium size test problem and finally a
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Table 7
The detailed results of HGA for all test problems (Step 3).

Item (j) Qj bj Nj Total cost CPU time (s) Total emissions

4 240, 240, 240,
240

193, 192, 193,
192

240, 120, 48, 40 21705.06 13.37 0.29

8  200, 200, 200,
200, 200, 200,
200, 200

162, 154, 163,
161, 162, 154,
163, 161

200, 100, 40,
33, 20, 200,
100, 40

72303.75 20.02 0.48

12  242, 240, 240,
246, 240, 254,
242, 244, 240,
246, 240, 254

194, 167, 205,
169, 184, 215,
194, 167, 205,
169, 164, 145

242, 120, 48,
41, 24, 254,
121, 48, 40, 24,
240, 127

155220.99 24.81 0.88

16  198, 252, 230,
252, 240, 264,
248, 240, 246,
252, 230, 252,
240, 264, 248,
240

133, 233, 170,
203, 191, 215,
201, 190, 133,
233, 170, 203,
191, 141, 177,
190

198, 126, 46,
42, 24, 264,
124, 48, 41, 25,
230, 126, 48,
44, 24, 240

283450.04 27.57 1.17

20  240, 248, 240,
264, 240, 239,
252, 240, 264,
230, 240, 248,
240, 264, 240,
239, 252, 240,
264, 230

156, 139, 161,
195, 182, 224,
153, 199, 178,
216, 156,139,
161, 195, 182,
156,153,199,
178, 216

240, 124, 48,
44, 24, 239,
126, 48, 44, 23,
240, 124, 48,
44, 24, 239,
126, 48, 44, 23

445509.14 31.06 1.47

24  240, 264, 240,
252, 244, 230,
258, 240, 235,
258, 240, 264,
240, 264, 240,
252, 244, 230,
258, 240, 235,
258, 240, 264

138, 158, 151,
198, 126, 190,
174, 204, 167,
179, 166, 167,
138, 158, 151,
168, 126, 190,
174, 157, 159,
179, 166, 219

240, 132, 48,
42, 24, 230,
129, 48, 39, 25,
240, 132, 48,
44, 24, 252,
122, 46, 43, 24,
235, 129, 48, 44

618587.63 34.75 1.78

F
3

Table 8
Comparison of HGA results with the lower bounds (Step 5).

Item (j) HGA total cost Lower bound Difference Percentage penalty%

4 21705.06 21667.52 37.54 0.17
8  72303.75 71975.79 327.96 0.46

12  155220.99 154894.48 326.51 0.21
16  282220.37 281844.34 376.03 0.13
20 445509.14 444994.49 514.65 0.12
24  618587.63 617469.78 1117.85 0.18
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ig. 11. HGA improvement trends over GA for total cost of all test problems (Step
).

sharply surge (in large size test problem) to reach the highest point
0.76% in 24-item test problem. In terms of total cost, this is clear
that HGA performance with increasing in size of test problem get
improved.
Step 4: Determine the lower bound solutions using GA

In order to get a feel of the solution given by the proposed heuris-
tic algorithm, a solution must be compared with a lower bound.
The lower bound is determined by solving the relaxed problem
(Eq. (16)) considering all variables as continuous [36]. The lower
bounds for the relaxed model of all the test problems solved by a
GA are given in Table 8.
Step 5: Compare the results of the HGA with the lower bound in
Step 4.

Now, one can determine the difference between the total costs
of the heuristic solution with the lower bound. The difference can
be determined by
Please cite this article in press as: A. Roozbeh Nia, et al., A
green vendor managed inventory of multi-item multi-constraint
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Difference = total cost of heuristic solution − lower bound (17)

If the difference between the total costs obtained by HGA and the
lower bound is small, then the difference between the proposed

587
Percentage penalty (%): Min. = 0.12, Max. = 0.46, Ave. = 0.21.

solution procedure and the unknown optimal solution should be
small and the solution given by the proposed hybrid algorithm
turns out to be the near-optimal solution because it is very close
to the lower bound. However, if there is a large difference between
the two solutions, then this gives us uncertainty about the effec-
tiveness of the hybrid algorithm. Therefore, it is better to define
another comparison measure. The percentage penalty is a well
known measure of performance that is generally used. The per-
centage penalty is defined as

percentage penalty = difference
lower bound

× 100% (18)

Based on Eq. (18), if the percentage penalty measure is low, then
the actual percentage difference between the solution obtained
by HGA and the unknown optimal solution should be low [36].
Table 8 contains the comparison results of the proposed HGA with
the lower bound. Moreover, Fig. 12 shows HGA percentage penalty
of all test problems. As a result, Fig. 12 shows percentage penalties
of HGA in large size test problem are below 0.2%. According to the
solutions reported in Table 8, the minimum, the maximum and
the average percentage penalties are very small; one can conclude
 hybrid genetic and imperialist competitive algorithm for
 EOQ model under shortage, Appl. Soft Comput. J. (2015),

that the solution given by the proposed hybrid algorithm turns
out to be the near-optimal solution because it is very close to the
lower bound.
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Fig. 12. The HGA percentage penalty of all test problems (Step 5).

. Conclusions and recommendation for future research

In this paper, a multi-item multi-constraint EOQ model with
hortage for a single-vendor single-buyer green supply chain under
endor managed inventory policy was developed. In comparison
o the models proposed by Pasandideh et al. [27] and Roozbeh
ia et al. [28], the our model contains extra constraints based on

he VMI  contractual agreement between the vendor and the buyer
nd green SC conditions such as tax cost of green house gas (GHG)
missions and limitation on total emissions of all items. We  pro-
osed a 5-step hybrid meta-heuristic procedure consisting of a
enetic and an imperialist competitive algorithm (HGA) to find a
ear-optimum solution of a nonlinear integer-programming prob-

em with the objective of minimizing the total cost of the supply
hain. Since there were no benchmarks available in the literature, a
enetic algorithm was also developed for the solution. In addition,
o assure the proposed hybrid algorithm works well, its results were
ompared to lower bounds that were obtained by solving a relaxed
odel when all variables are treated continuous using a GA. At the

nd, six numerical examples in three categories (small, medium
nd large size) were presented to demonstrate the application of
he proposed methodology. The results showed that the proposed
ybrid procedure was able to find better and nearer optimal solu-
ions because they were very close to their lower bounds.

For future researches in this area, we recommend the follow-
ngs:

a) Quantity discounts can be allowed.
b) In addition to backorders, lost sales can also be assumed for

shortages.
(c) Some parameters can be considered fuzzy or random. In this

case, the model has either fuzzy or stochastic nature.
d) Other meta-heuristic algorithms such as simulated annealing

(SA), ant colony optimization (ACO), and particle swarm opti-
mization (PSO) may  also be employed to solve the problem.

e) Multi-echelon supply chain such as one-buyer multi-supplier,
multi-buyer one-supplier, and multi-buyer multi-supplier sup-
ply chains can be investigated.

(f) The economic production quantity (EPQ) model can also be uti-
lized.

g) For parameters setting up of meta-heuristic algorithms, devel-
oping an automatic tuning procedure can be considered.
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