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Nowadays, there is an increasing dependence on metaheuristic algorithms for solving combinatorial optimization problems. This 
paper discusses various metaheuristic algorithms, their similarities and differences and how Ant Colony Optimization algorithm 
is found to be much more suitable for providing a generic implementation. We start with the solution for Travelling Salesman 
Problem using Ant Colony Optimization (ACO) and show how Polynomial Turing Reduction helps us solve Job Shop 
Scheduling and Knapsack Problems without making considerable changes in the implementation. The probabilistic nature of 
metaheuristic algorithms, especially ACO helps us to a greater extent in avoiding parameter fine-tuning. Through Sensitivity 
analysis we find that ACO exhibits better resilience to changes in parameter values in comparison to other metaheuristic 
algorithms.  
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1. Introduction 

The necessary requirement for most of the applications is to provide appropriate results within stipulated time. 
Due to the increase in the amount of data for processing, guaranteeing the time requirement becomes infeasible 
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when the application is processed with statistical methods. Hence metaheuristic algorithms came into view. 
Metaheuristics are a class of algorithms that uses lower level heuristics or procedures to solve a problem by 
providing a sufficiently good solution within acceptable time with imperfect or limited information8. These 
algorithms usually employ iterative methods and heuristics to generate a solution using stochastic optimization 
techniques, which will often be a satisfactory solution for the problem9. These algorithms are mostly nature inspired 
and can be solved within the specified time. The trade-off occurs by compromising the result’s accuracy with a 
minimal error value. Another advantage of metaheuristic algorithms is that it is not problem dependent10. It is a 
generic implementation, which can be used for solving almost all varieties of problems. But the current applications 
using metaheuristic algorithms do not follow this standard. Many implementations have been proposed, that claims 
to solve problems using modified metaheuristic algorithms. Even though these methods assert on providing better 
results, they cannot be considered as a contribution to the field of metaheuristic algorithms, since the basic definition 
of a metaheuristic algorithm states that the method is not problem specific, rather a generic solution that can be fitted 
to all the NP Complete/ NP Hard problems. Further, these so-called modified methods depends too much on fine 
tuning of the parameters and they tend to be more deterministic trying to reason every probabilistic behaviour. So in 
our view the very act of perfecting a metaheuristic algorithm is wrong. For the current study, we have shortlisted 
three metaheuristic techniques; Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO) and the 
Firefly Algorithm. 

2. Literature Survey 

The process of discovery of solutions (food source) by ants was initially proposed by J. L. Deneubourg et al. in 
19832. According to Deneubourg, the behaviour of ants in discovering food is highly probabilistic and is prone to 
errors. It also states that this error prone system serves as the basis for sustainability of the system. If all the ants 
tend to follow the same path, then the solution has a high probability of getting struck in local optima, and 
exploration is curtailed. According to the nature, an inbuilt error is introduced such that all the ants do not follow the 
same pre-determined path, instead some ants tend to diverge, which makes them explore other areas to obtain 
diverge results. An optimization approach that uses the ant analogy was proposed by M. Dorigo in 19923. The 
method proposed by M. Dorigo is a combination of distributed computation, positive feedback and constructive 
greed heuristic11. It provides efficient solutions within the stipulated time, and also provides effective exploration 
constraints such that the entire search space is explored in an efficient manner. Dorigo’s basic model proposes three 
algorithm variations, Ant Density, Ant Quantity and Ant cycle. Later in 199711 proposed ACO for Travelling 
Salesman Problem using a 3-opt local search, which is found to be effective in overcoming the local optima and 
convergence issues. Later in 20004 provided the first evidence of convergence for an algorithm of ant colonies.Some 
common extensions to the ACO are the Elitist Ant System14 where the global best deposits pheromone on every 
iteration, the Max-Min Ant Systems15 where pheromone deposits are modified, Rank based Ant System16 where 
solution ranking is performed on the basis of path lengths, Continuous Orthogonal Ant Colony17 which provides 
enhanced global search capability and Recursive Ant Colony Optimization18 using nested ant systems. 

The initial proposal regarding swarm intelligence5 was considering the nearest neighbour velocity matching and 
craziness. Every particle in the population is assigned an (x, y) positions and their corresponding axis velocities. This 
velocity value determines the speed and direction of the particles. An enhancement to this approach5 is the cornfield 
vector. Each agent now maintains the best solution explored by it called the pbest[](which is an array) and its 
positions. Additionally, the agents also have knowledge about the globally best position gbest that has been found 
by the flock. The proposal by James Kennedy5 was improved by the usage of an inertia weight w that plays a role of 
balancing the global search and local search6. 

Inspired by the flashing behaviour of fireflies Xin-She Yang in 20087 formulated the firefly metaheuristic 
algorithm which is based on three fundamental assumptions regarding fireflies. It assumes that all fireflies are 
unisexual and hence get attracted towards each other irrespective of their sex, and the attractiveness is directly 
proportional to the brightness and in turn inversely proportional to distance. If there is no brighter fly then the 
movement is governed by randomness. Here the variation of light intensity and the formulation of attractiveness 
plays the key role. Even though ACO, Firefly and PSO are metaheuristic and can be used for performing similar 
functionalities, the operational domain of ACO is discrete, while that of PSO and Firefly is continuous. ACO starts 
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its dispersion from a starting node and finds the best solution to that node, while PSO and Firefly disperses the 
particles onto points that are possibly the solutions and tries to move all the particles towards the best known 
solution. The movement of particles in PSO and Firefly is smooth, while that of ACO is discrete. The ant movement 
in ACO is basically a jump from one solution point to other. The ant movement in ACO is probabilistic. This 
behaviour takes the trail intensity into consideration in determining the destination point. Hence the direction of 
traversal is completely determined by the destination of traversal. Due to the continuous moving behaviour of the 
particles in PSO, it takes into account two solutions, the global best and the local best to determine its direction of 
travel. The velocity of travel is determined by these points along with some parameters generated in random. Every 
firefly moves towards another firefly with a better brightness. Fireflies do not maintain any data or share any 
information (other than their own brightness values) with other fireflies. In both the algorithms, the velocity of 
movement is directly proportional to the solution’s fitness. The movement of particles in PSO is regular and towards 
the local and global best, while firefly’s exhibit random movement. The random movement is due to the fact that 
comparison of the fitness function is performed on fly to fly basis. Due to the computation of solutions from the 
dispersed agents, the degree of getting struck in local optima is high. Node selection is made rather than point 
selection; hence there is no divergence from the course for an ant, while a particle in PSO can change its course after 
every iteration depending on the current local and global best, and in Firefly, it depends on the flies within the range 
of the current firefly. PSO works on an assumption that all best values lie around a particular region; hence it has a 
high probability of getting struck in the local optima if the actual best value is present in the opposite direction of 
traversal. ACO and Firefly defines their fitness function as the distance between the nodes, while the fitness function 
in PSO can be defined by the user. Hence PSO can be used to solve multi objective optimization problems, while 
some modifications are necessary to convert ACO and Firefly to solve multiple objectives based problems.  All the 
algorithms are capable of working with noisy or irregular dynamic data. In order for PSO and Firefly to work on a 
discrete domain, corresponding mapping should be performed by the user, which can act as an additional overhead. 
Many similarities exist in PSO and Firefly Algorithm (FA), as well as the fact that by changing the absorption co-
efficient (γ) of the Firefly Algorithm to zero, the Firefly Algorithm behaves exactly like the Standard PSO algorithm 
makes their functionality look very similar. PSO and Firefly do not exhibit probabilistic behaviour. Randomization 
is incorporated during the movement of particles. While Firefly Algorithm employs a Gaussian distribution function 
to determine its random parameters, PSO does not employ any. In ACO, the initial distribution of functions is 
random, while during traversal, uniform distribution function is used for determining the random parameters. PSO 
requires some parameters to be set by the user and it does not contain any fitness function, hence algorithms 
generated by employing PSO are considered to be problem specific.  

On profound analysis it has been found that ACO exhibits various traits that makes it generic and accurate. It 
performs exceptionally well by being flexible to Hybridization, and is also basically parallel in nature and they 
exhibit the ability to handle dynamic data sets efficiently. Its ability to define the stopping criterion it powerful and 
the complexity of the fitness function is moderate. Hence ACO has been chosen as the appropriate candidate for our 
study. 

3. Stochastic Nature and Generic Implementations : The Need 

The advantage of using a generic code is that it can be used for any type of problem, without much change in the 
basic logic. It also tends to provide reliable results irrespective of the problem being solved. The problem in creating 
a problem specific implementation of ACO is that the basic working model tends to be changed and hence the code 
reliability is lost and sometimes the change becomes intense and will lead to a code that cannot be called as ACO. 
Further deriving such algorithms is opposed to the basic notion of the Metaheuristics, which states that a 
metaheuristic algorithm should not be bound to a specific problem and it has to be designed in such a manner that it 
is usable in a variety of problem situations1. 

Hence, in order to use ACO for various varieties of problems, the input of the corresponding problems should be 
converted to a format that can be used by ACO, i.e. the input should be converted to a graph with nodes and 
weighted edges. TSP based graph for ACO is usually bidirectional, while other implementations like JSSP or 
Knapsack requires some modifications to be made in the graph. The drawback of using such an approach is that it 
adds up an additional pre-processing overhead for the system. But this overhead completely depends upon the nature 
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of the problem in hand. If the problem is highly dynamic in nature, it will require frequent modification of the graph, 
but if it is of stable nature or if it has very low variations, ACO can be guaranteed to provide efficient results. 

Since ACO solves TSP in its implementation, while PSO and Firefly algorithms are not problem specific. Hence 
we consider the basic problem structure for ACO, PSO and Firefly algorithms to be a graph and shortest path is 
obtained from it. The problems of Job Shop Scheduling and Knapsack are converted into graphs with edge weights 
and are solved using the generic algorithm rather than providing a problem specific algorithm to solve the problems. 

4. Polynomial Turing Reductions 

In computational complexity theory, NP-Hard or Non Deterministic Polynomial Time Hard, is a class of 
problems that is considered to be as hard as the hardest problems in NP (informally). Unlike Polynomial Many One 
Reduction which is used for reducing NP-Complete problems, we use Polynomial Turing Reduction for reduction 
between NP-Hard problems. “A polynomial-time Turing reduction from a problem A to a problem B is an algorithm 
that solves problem A using a polynomial number of calls to a subroutine for problem B, and polynomial time 
outside of those subroutine calls. Polynomial-time Turing reductions are also known as Cook reductions, named 
after Stephen Cook”. 

4.1. Job Shop Scheduling Problem to Travelling Salesman Problem 

Problem Definition 
“Job shop scheduling is an NP-Hard problem, that contains a list of jobs and machines, and a constraint placed 

on the order of execution of these jobs. The requirement is to find the sequence of execution of all jobs while 
minimizing the make-span”. 

The Job Shop Problem can contain multiple operations in a single job, or can be atomic. The basic intention for 
selecting a job shop scheduling problem is that it can be mapped to most of the scheduling problems.  
JSSP uses a disjunctive graph for representing data. This is a normal graph but with a combination of directed and 
undirected edges. A disjunctive graph is a directed graph , where V represents the vertices, C represents 
conjunctive edges and D represents the disjunctive edges. The conjunctive edges are directed, while the disjunctive 
edges are undirected, signifying a two way connection. 

 

Fig. 1. Sample Disjunctive graph with 3 jobs and 4 machines. 

Every job is represented in a single row and a directed arrow is added to each sub job in a row, to signify its 
sequential nature. E.g. The first row (Fig. 1) shows the sequence of Job I. 1, 2, 3 and 4 are the sub jobs that are to be 
completed in a sequence. I.e. sub job 2 cannot be performed without finishing sub job 1. So they are represented by 
directed arrows. Similarly 5, 6, 7 and 8 are the sub jobs of Job II, and 9, 10, 11 and 12 are the sub jobs of Job III.  
Sub jobs running on the same machine are connected with disjunctive arcs (lines without arrow heads), i.e. 1, 6 and 
9 are run on the same machine (Machine 1) and 2, 5 and 10 are run on the same machine (Machine 2) (Fig. 1). 
Similarly disjunctive arcs are added for other jobs (Fig. 1). Apart from the nodes defined from the dataset, start (S) 
and end (E) nodes are added to the graph. These nodes represent the beginning and the end points of the graph. 
Weight of an edge corresponds to the time taken by the originating node to complete the job. The job of ACO is to 
convert this graph into a directed graph by converting the disjunctive arcs to directed ones. This makes up the pre-
processing stage of converting the input of the job shop scheduling to the input of the TSP, after which running the 
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TSP will ultimately lead to solving the Job Shop problem. The algorithmic mapping of TSP with Job Shop 
Scheduling is discussed below 

Job Shop TSP 

1. Initialize m ants and n cities(jobs) 1. Initialize m ants and n cities 

2. S contains the list of jobs that are to be 
processed next (All initial jobs connected to 
S in the figure i.e., Elements not in TabuList) 

2. S contains the list of cities to be visited next  
(All unvisited cities i.e., Elements not in 
TabuList) 

3. No of machines is defined by the problem 3. No of machines is set to 1 

4. Repeat until TabuList is full 

4.1. Repeat for each ant 

4.1.1. Find job j to be performed next with 
probability Pij (Based on CDF in probability) 

4.1.2. If machine for job j is free, 

4.1.2.1. Remove the job from S 

4.1.2.2. Add the job to the TabuList 

4.1.2.3. Add the time to its corresponding machine. 

4.1.2.4. Add its Conjunctive neighbors to S 

4.1.3. else goto 4.1.1 

4.2. Increment time and decrement all machine 
values 

4. Repeat until TabuList is full 

4.1. Repeat for each ant 

4.1.1. Find town j to move to with probability Pij 
(Based on CDF in probability) 

4.1.2. If the machine is free, 

4.1.2.1. Remove the job from S 

4.1.2.2. Add the job to the TabuList 

4.1.2.3. Add the distance to its corresponding 
machine. 

4.1.3. else goto 4.1.1 

4.2. Increment time and decrement the machine 
value 

5. Repeat section 4 until the stopping criterion 
is reached 

5. Repeat section 4 until the stopping criterion 
is reached 

4.2. Knapsack Problem to Travelling Salesman Problem 

Problem Definition 
“Given a set of items, each with a mass and a value, we need to determine the number of each item to include in 

a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible”. 
A Directed graph  is used for depicting the Knapsack data, where vertices V correspond to the items 

that can be chosen from the Knapsack and the edges E corresponds to the connection between the vertices. Every 
node is connected to every other node in the graph. The directions are specifically provided because the weight of an 
edge from node A to node B is not the same as the weight from node B to A. Weights of edges are added by 
calculating the profit obtained for 1 unit of the item i.e.  from which the edge originates. Hence 
even though a bidirectional edge exists between two vertices, their weights differ. 

The job of ACO is to traverse this graph and determine the largest distance of traversal. In this problem, we also 
have the size of Knapsack as a constraint; hence the path taken is trimmed according to the maximum limit and the 
remaining nodes in the path are ignored. 
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Knapsack TSP 

1. Initialize m ants and n cities(Items) 1. Initialize m ants and n cities 

2. Calculate the edge weights using the formula 
weight of the originating vertex / profit of the 
originating vertex 

2. Calculate the edge weights using the distance 
formula 

3. Repeat until TabuList is full 

3.1. Repeat for each ant 

3.1.1. Find job j to be performed next with 
probability Pij (Based on CDF in probability) 

3.1.1.1. Add the job to the TabuList 

3. Repeat until TabuList is full Repeat for each 
ant 

3.1.1. Find town j to move to with probability Pij 
(Based on CDF in probability) 

3.1.1.1. Add the job to the TabuList 

 

4. Calculate the profit of each ant by summing 
up the profit till the sum of weights reach the 
maximum knapsack capacity    

4. Calculate the total distance by summing up 
the distance of all the edges in the path 

5. Find the path with the highest profit 5. Find the path with the lowest distance 

6. Repeat sections 3,4 and 5 till the stopping 
criterion is reached 

6. Repeat section 3,4 and 5 until the stopping 
criterion is reached 

5. Implementations, Experimental Results and Discussion 

All the experimental simulations were performed on a Dell Precision T7600 Workstation, with the following 
configuration:  Two Intel Xeon Processor E5-2680, 8 Cores each @ 2.7 GHz, 20 MB Cache, 32 GB ECC RAM in a 
Windows 7 - 64 bit environment. Implementation was done in C# language using the Visual Studio 2012 
development environment. Travelling Salesman Problem was implemented using ACO (Ant Cycle) on the Oliver 
30, elion 50, elion 75, kroa 100 datasets, and sensitivity analysis was performed using the obtained results. The 
results (Fig. 2, Fig. 3, and Fig. 4) depicts that parameters play a very minor role in determining the accuracy of 
results. Changes in the values of parameters results in the result deviation of 0.02%, which is very negligible and can 
be tolerated by any real time application for the benefit of the low convergence time offered by ACO.  

 
Fig. 2. Sensitivity Analysis TSP (Alpha) 

 
Fig. 3. Sensitivity Analysis TSP (Beta) 
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Fig. 4. Sensitivity Analysis TSP (Rho)  
Fig. 5. Sensitivity Analysis JobShop (Alpha) 

 
Fig. 6. Sensitivity Analysis Job Shop (Beta) 

 
 

Fig. 7. Sensitivity Analysis Job Shop (Rho) 
 

Fig. 5, Fig. 6 and Fig. 7 depict the results of sensitivity analysis carried out in the Job Shop Scheduling process. 
A variance of 0.009% has been observed, while Knapsack shows a variance rate of 0.06%, which is very negligible. 
It can be observed from the Fig. 8 and Fig. 9 that implementing the JobShop Scheduling and Knapsack based on a 
generic ACO implementation using Turing Reduction provides near optimal results within acceptable time limits. 
JobShop Algorithm was implemented using the abz5, abz6, abz7, abz8 and abz9 datasets12 and Knapsack Algorithm 
was implemented using the Knapsack_01 dataset (P01, P02, P03 and P04 instances)13. 

            Fig. 8. Job Shop Scheduling (abz5) 
 

 
                                 Fig. 9. Knapsack 
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6. Conclusion and Future Works 

This paper provides a generic implementation of ACO to solve NP-Hard problems such as the Travelling 
Salesman Problem, Job Shop Scheduling Problem and the Knapsack Problem. Results show that the generic 
implementation provides near optimal results within acceptable time limits and also found to be equivalent to results 
obtained from problem specific implementations of the same. We have also found that it is possible to solve other 
related NP-Hard problems using this generic implementation based on Polynomial Turing Reduction. This study has 
been performed as a part of our process of creating a comprehensive, open source, parallel metaheuristic toolbox. 
Since our goal is to create libraries for almost all metaheuristic algorithms, providing problem specific 
implementations is found to be very tedious and is also not feasible. Hence we carried out the initial process of 
creating a generic implementation of ACO along with Turing reductions for solving other NP-Hard Problems. In 
future we are planning to extend this library to incorporate other metaheuristic algorithms, including Particle Swarm 
Optimization, Firefly Algorithm, Bee Colony Algorithm, etc. Parallelization of these algorithms in-order to harvest 
the potential of multi-core CPUs and many core Graphics Processing Units (GPUs) is the prime motivation of our 
work. We also consider porting these algorithms to the Hadoop Map Reduce based Distributed Processing Engine in 
order to exploit their truly distributed nature. 
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