مقاله بررسی روش های ایندکس گذاری داده های بزرگ: طبقه بندی و ارزیابی عملکردA survey on indexing techniques for big data: taxonomy and performance evaluation

در انبار موجود نمی باشد

مقاله بررسی روش های ایندکس گذاری داده های بزرگ: طبقه بندی و ارزیابی عملکردA survey on indexing techniques for big data: taxonomy and performance evaluation

25,000 تومان

ژورنال

SPRINGER

سال انتشار

2015

صفحات انگلیسی

60 تا 100

صفحات فارسی

40 تا 50

نقد و بررسی

مقاله بررسی روش های ایندکس گذاری داده های بزرگ: طبقه بندی و ارزیابی عملکرد

چکیده فارسی :

 رشد انفجاری در حجم، سرعت، و تنوع داده های تولید شده توسط دستگاه های همراه و برنامه های کاربردی ابری در ازدیاد “داده های بزرگ” نقش داشته است. راه حل های موجود  برای ذخیره سازی کارآمد داده ها و مدیریت آنها  نمی توانند نیازهای چنین داده های ناهمگنی که مقدار داده ها به طور مداوم در حال افزایش هستند را برآورد سازند. با توجه به سرعت در حال رشد اندازه شاخص ها و زمان جستجو، راه حل های موجود برای مدیریت و بازیابی موثر داده ها ناکارآمد میشوند بنابراین یک طرح شاخص گذاری بهینه شده برای داده های بزرگ مورد نیاز است. با نگاهی به برنامه های کاربردی جهان واقعی در می یابیم که موضوع ایندکس گذاری با داده های بزرگ در محاسبات ابری در مسائل پزشکی، سازمانی، آزمایشات علمی و شبکه های اجتماعی بصورت گسترده مطرح می شود.  تا به امروز، محاسبات نرم متعدد، یادگیری ماشینی و دیگر روشهای هوش مصنوعی برای برآورده کردن نیازمندیهای شاخص گذاری استفاده می شده اند، در عین حال از آنجایی که روشهای ایندکس گذاری وارد محاسبات ابری شده اند، در مقاله، مطالعه جدیدی در مورد بررسی عملکرد و نتایج روشهای حل مسائل ایندکس گذاری برای داده های بزرگ وجود ندارد. هدف این مقاله بررسی و آزمایش روشهای ایندکس گذاری موجود برای داده های بزرگ است. در این تحقیق طبقه بندی روشهای ایندکس گذاری توسعه یافته است تا به محققان برای درک و انتخاب یک روش پایه بمنظور طراحی یک روش ایندکس گذاری که کاهش زمان و فضای مصرفی کمتررا برای BD-MCC فراهم میکند، کمک کند. در این تحقیق، 48 روش ایندکس گذاری بر اساس 60 مقاله با موضوع مرتبط مورد مطالعه و مقایسه قرارگرفته اند. عملکرد روشهای ایندکس گذاری بر اساس ویژگی آن ها و نیازمندیهای ایندکس گذاری داده های بزرگ نیز مورد تجزیه و تحلیل قرار گرفت.  نقش اصلی این تحقیق طبقه بندی روشهای ایندکس گذاری دسته بندی شده بر اساس متد آنهاست. دسته بندی ها متدهای شاخص گذاری غیر هوش مصنوعی ( non-artificial intelligence)، هوش مصنوعی (artificial intelligence) و هوش مصنوعی مشارکتی (collaborative artificial intelligence)هستند. بعلاوه در کنار محدودیت های هر روش، اهمیت پروسیجر ها(procedure) و عملکردهای مختلف نیز مورد تجزیه و تحلیل قرار گرفت. در بخش نتیجه گیری، چندین موضوع تحقیق کلیدی برای آینده با پتانسیل افزایش سرعت پردازش و استقرار روشهای ایندکس گذاری هوش مصنوعی مشارکتی در BD-MCC به دقت شرح داده شده است.

چکیده انگلیسی:

The explosive growth in volume, velocity, and diversity of data produced by mobile devices and cloud applications has contributed to the abundance of data or ‘big data.’Available solutions for efficient data storage and management cannot fulfill the needs of such heterogeneous data where the amount of data is continuously increasing. For efficient retrieval and management, existing indexing solutions become inefficient with the rapidly growing index size and seek time and an optimized index scheme is required for big data. Regarding real-world applications, the indexing issue with big data in cloud computing is widespread in healthcare, enterprises, scientific experiments, and social networks. To date, diverse soft computing, machine learning, and other techniques in terms of artificial intelligence have been utilized to satisfy the indexing requirements, yet in the literature, there is no reported stateof- the-art survey investigating the performance and consequences of techniques for solving indexing in big data issues as they enter cloud computing. The objective of this paper is to investigate and examine the existing indexing techniques for big data. Taxonomy of indexing techniques is developed to provide insight to enable researchers understand and select a technique as a basis to design an indexing mechanism with reduced time and space consumption for BD-MCC. In this study, 48 indexing techniques have been studied and compared based on 60 articles related to the topic. The indexing techniques’ performance is analyzed based on their characteristics and big data indexing requirements. The main contribution of this study is taxonomy of categorized indexing techniques based on their method. The categories are non-artificial intelligence, artificial intelligence, and collaborative artificial intelligence indexing methods. In addition, the significance of different procedures and performance is analyzed, besides limitations of each technique. In conclusion, several key future research topics with potential to accelerate the progress and deployment of artificial intelligence-based cooperative indexing in BD-MCC are elaborated on.

ژورنال

SPRINGER

سال انتشار

2015

صفحات انگلیسی

60 تا 100

صفحات فارسی

40 تا 50

دیدگاه خود را در باره این کالا بیان کنید افزودن دیدگاه

دیدگاهها

هیچ دیدگاهی برای این محصول نوشته نشده است.

    هیچ پرسش و پاسخی ثبت نشده است.

پرسش خود را درباره این کالا بیان کنید

ثبت پرسش
انصراف ثبت پرسش

محصولات مرتبط